Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM A chia hết cho 7 và 11. Nếu bạn đã biết qua về lý thuyết đồng dư thì có thể giải thế này:
* 36 mod 7 = 1 nên 36^38 mod 7 = 1; 41 mod 7 = -1 nên 41^33 mod 7 = (-1)^33 = -1
suy ra A mod 7 = 0 hay A chia hết cho 7.
* 36 mod 11 = 3, 41 mod 11 =-3 nên A mod 11 = 3^ 38 - 3^33 =3^33 (3^5 - 1) =3^33. 242
Vì 242 chia hết cho 11 nên A mod 11 = 0.
Vậy A chia hết cho 7.11 =77
7755có tận cùng là 3
336có tận cùng là 9
nên 336+775-2 có tận cùng là 3+9-2=...0 chia hết cho 5
\(=36^{33+5}+41^{33}=60466176\cdot36^{33}+41^{33}\)\(=60466175\cdot36^{33}+36^{33}+41^{33}\)
\(=60466175\cdot36^{33}+\left(36+41\right)\left(36^{32}-36^{31}\cdot41+...-41^{32}\right)\)
\(=77\cdot785275\cdot36^{33}+77\cdot M\)chia hết cho 77
3) (57 - 56 +55) = 55.(52-5+1)= 55.21 \(⋮\) 21
4) 76+75-74= 74.(72+7-1)=74.55=73.7.11.4=73.4.77 \(⋮\) 77
3) \(5^7-5^6+5^5=5^5.\left(5^2-5+1\right)=5^5.21⋮21\)
4) \(7^6+7^5-7^4=7^3.\left(7^3+7^2-7\right)=7^3.385=7^3.77.5⋮77\)
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.