K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{2024}{1011}>\dfrac{2022}{1011}=2;2=\dfrac{200}{100}>\dfrac{199}{100}\)

Do đó: \(\dfrac{2024}{1011}>\dfrac{199}{100}\)

29 tháng 7

\(\dfrac{2024}{1011}=\dfrac{2022}{1011}+\dfrac{2}{1011}=2+\dfrac{2}{1011}>2\)

\(\dfrac{199}{100}=\dfrac{200}{100}-\dfrac{1}{100}=2-\dfrac{1}{100}< 2\)

=> \(\dfrac{199}{100}< 2< \dfrac{2024}{1011}\)

Hay \(\dfrac{199}{100}< \dfrac{2024}{1011}\)

NV
2 tháng 7 2021

Áp dụng BĐT: \(\dfrac{1}{\sqrt{ab}}\ge\dfrac{2}{a+b}\) (dấu "=" xảy ra khi \(a=b\), nếu \(a\ne b\) thì \(\dfrac{1}{\sqrt{ab}}>\dfrac{2}{a+b}\)):

\(VT>\dfrac{2}{1+2021}+\dfrac{2}{2+2020}+\dfrac{2}{3+2019}+...+\dfrac{2}{2021+1}\)

\(VT>\dfrac{2}{2022}+\dfrac{2}{2022}+...+\dfrac{2}{2022}\) (2021 số hạng)

\(VT>\dfrac{1}{1011}.2021=\dfrac{2021}{1011}\) (đpcm)

4 tháng 6 2023

 Ta có \(3n^3-1011⋮1008\)

\(\Leftrightarrow\left(3n^3-3\right)-1008⋮1008\) 

\(\Leftrightarrow3\left(n^3-1\right)⋮1008\) 

\(\Leftrightarrow n^3-1⋮336\)\(⋮48\) 

\(\Rightarrow\left(n-1\right)\left(n^2+n+1\right)⋮48\).

Do \(n^2+n+1\) là số lẻ với mọi \(n\inℤ\) nên suy ra được \(n-1⋮48\), đpcm.

4 tháng 6 2023

Giả sử n là số chẵn ta có: 3n3 là số chẵn ⇒ 3n3 - 1011 là số lẻ 

⇒ 3n3 - 1011 không chia hết cho 1008 vậy điều giả sử là sai 

⇒ n là số lẻ. Mặt khác ta cũng có:

3n3 - 1011 ⋮ 1008 ⇔ 3n3 - 3 -1008 ⋮ 1008 ⇔ 3n3 - 3 ⋮ 1008

⇔3(n3-1)⋮ 1008⇔ n3 - 1⋮ 336 ⇔ n3 - 1⋮ 48 ⇔(n-1)(n2+n+1)⋮48(1)

vì n là số lẻ (chứng minh trên) nên ta có: n2 + n + 1 là số lẻ 

⇔ n2 + n + 1 không chia hết cho 48 (2)

Kết hợp(1) và (2) ta có: n - 1 ⋮ 48 (đpcm)

 

 

17 tháng 7 2016

Xét biểu thức : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2}=2\left(\sqrt{n+1}-\sqrt{n}\right)\)với n > 0

Áp dụng : \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2024}}>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2025}-\sqrt{2024}\right)\)

\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2024}}>2\left(\sqrt{2025}-1\right)=88\) (đpcm)

7 tháng 10 2023

 Thật may câu này tương tự câu cuối trong đề thi HSG 9 tỉnh mình năm 2021-2022 nên biết làm :)) (bài lúc đó y chang thế này chỉ khác là số 2021 với 2022)

 Trước tiên ta sẽ chứng minh \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\). Thật vậy, ta có:

 \(VP=P\left(x\right)P\left(x+1\right)\) 

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=\left(x^2+mx+n\right)\left(x^2+2x+1+mx+m+n\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x^2+mx+n\right)+2x+m+1\right]\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+x^2+mx+n\)

\(=\left[\left(x^2+mx+n\right)+x\right]^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left[P\left(x\right)+x\right]^2+m\left[P\left(x\right)+x\right]+n\)

\(=P\left(P\left(x\right)+x\right)=VT\) 

Vậy đẳng thức được chứng minh. 

Từ \(P\left(P\left(x\right)+x\right)=P\left(x\right)P\left(x+1\right)\), chọn \(x=2023\), ta được:

\(P\left(P\left(2023\right)+2023\right)=P\left(2023\right)P\left(2024\right)\)

\(\Rightarrow Q\left(x\right)\) có nghiệm nguyên là \(x=P\left(2023\right)+2023\) (đpcm)

 

1 tháng 6 2023

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.

24 tháng 11 2019

Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+....+\frac{1}{2020}\right)\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{2019}-\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1010}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

\(\Rightarrow\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

=> k = 1

=> k là số tự nhiên (đpcm)

30 tháng 9 2015

Ta sử dụng nhận xét: Nếu \(n\) là số nguyên mà \(n-1\vdots3\)  thì \(n^3-1\vdots9.\)  Thực vậy ta có \(n=3k+1\to n^3-1=3k\left(n^2+n+1\right)=3k\left(n^2-1+n-1+3\right)\vdots3\times3=9.\) (Do \(n-1,n^2-1\vdots3\)).

Ta có \(1993^{1194}-1=\left(1993^3\right)^{398}-1\vdots1993^3-1\vdots9,\) do \(1993-1=1992\vdots3.\) Ta cũng có \(19^9-1\vdots18\vdots9\to19^9-1\vdots9.\)  Thành thử 

\(A=1+19^9+93^{199}+1993^{1194}=3+\left(19^9-1\right)+\left(1993^{1194}-1\right)+93^{199}\)  chia cho 9 có dư là 3. Vậy \(A\) chia 9 dư 3. Nếu là A là số chính phương, thì vì A chia hết cho 3 nên A cũng chia hết cho 9. Suy ra A chia 9 dư 0, mâu thuẫn. 

Vậy A không phải là số chính phương.

 

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

27 tháng 6 2018

thanks boy