K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2023

Ta có \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\) 

\(=\sqrt{2a\left(a+b+c\right)+\dfrac{b^2-2bc+c^2}{2}}\)

\(=\sqrt{\dfrac{4a^2+b^2+c^2+4ab+4ac-2bc}{2}}\)

\(=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\)

\(\le\sqrt{\dfrac{\left(2a+b+c\right)^2}{2}}\)

\(=\dfrac{2a+b+c}{\sqrt{2}}\).

Vậy \(\sqrt{2022a+\dfrac{\left(b-c\right)^2}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\). Lập 2 BĐT tương tự rồi cộng vế, ta được \(VT\le\dfrac{2a+b+c+2b+c+a+2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4\left(a+b+c\right)}{\sqrt{2}}\) \(=\dfrac{4.1011}{\sqrt{2}}\) \(=2022\sqrt{2}\)

ĐTXR \(\Leftrightarrow\) \(\left\{{}\begin{matrix}ab=0\\bc=0\\ca=0\\a+b+c=1011\end{matrix}\right.\) \(\Leftrightarrow\left(a;b;c\right)=\left(1011;0;0\right)\) hoặc các hoán vị. Vậy ta có đpcm.

4 tháng 12 2017

Ta có:

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=9\\ \Leftrightarrow a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}=9\\ \Leftrightarrow\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(\Rightarrow\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{\sqrt{a}}{a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}+\dfrac{\sqrt{b}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}+\dfrac{\sqrt{c}}{c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}\\ =\dfrac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\dfrac{\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)}+\dfrac{\sqrt{c}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\\ =\dfrac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{a}+\sqrt{c}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\\ =\dfrac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}\\ =\dfrac{4}{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2\left(\sqrt{b}+\sqrt{c}\right)^2\left(\sqrt{a}+\sqrt{c}\right)^2}}\)\(=\dfrac{4}{\sqrt{\left(a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(c+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}}\\ =\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

24 tháng 4 2017

Gọi VT là P

Ta có:

\(\sqrt{2012a+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{2a\left(a+b+c\right)+\dfrac{\left(b-c\right)^2}{2}}=\sqrt{\dfrac{\left(2a+b+c\right)^2-4bc}{2}}\le\dfrac{2a+b+c}{\sqrt{2}}\left(1\right)\)

Tương tự ta có:

\(\left\{{}\begin{matrix}\sqrt{2012b+\dfrac{\left(c-a\right)^2}{2}}\le\dfrac{2b+c+a}{\sqrt{2}}\left(2\right)\\\sqrt{2012c+\dfrac{\left(a-b\right)^2}{2}}\le\dfrac{2c+a+b}{\sqrt{2}}\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được

\(P\le\dfrac{2a+b+c}{\sqrt{2}}+\dfrac{2b+c+a}{\sqrt{2}}+\dfrac{2c+a+b}{\sqrt{2}}\)

\(=\dfrac{4}{\sqrt{2}}\left(a+b+c\right)=2012\sqrt{2}\)

Dấu = xảy ra khi \(\left(a,b,c\right)=\left(1006,0,0;0,1006,0;0,0,1006\right)\)

24 tháng 2 2018

• Vì a, b, c đều dương và a + b + c = 2

nên \(0< a,b,c< 2\)

• Theo gt, ta có:

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=2-a\\\left(b+c\right)^2-2bc=2-a^2\end{matrix}\right.\)

\(\Rightarrow\left(2-a\right)^2-2+a^2=2bc\)

\(\Rightarrow bc=\dfrac{\left(4-4a+a^2\right)-2+a^2}{2}=\dfrac{2a^2-4a+2}{2}=\left(a-1\right)^2\)

\(\Rightarrow b^2c^2=\left(a-1\right)^4\)

• Ta lại có: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}=a\sqrt{\dfrac{1+b^2+c^2+b^2c^2}{1+a^2}}\)

\(=a\sqrt{\dfrac{3-a^2+\left(a-1\right)^4}{1+a^2}}=a\sqrt{\dfrac{a^4-4a^3+5a^2-4a-4}{1+a^2}}\)

\(=a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}=a\left(2-a\right)\)

• Tương tự, ta cũng có: \(b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}=b\left(2-b\right)\)

\(c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}=c\left(2-c\right)\)

• Suy ra \(a\sqrt{\dfrac{\left(1+a^2\right)\left(a-2\right)^2}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+b^2\right)\left(1+a^2\right)}{1+c^2}}\)

\(=2\left(a+b+c\right)-\left(a^2+b^2+c^2\right)=2\left(đpcm\right)\)

31 tháng 7 2017

1. Câu hỏi của Trần Huỳnh Thanh Long - Toán lớp 9 - Học toán với OnlineMath

NV
31 tháng 1 2021

\(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

\(P=\sqrt{\dfrac{yz}{xy+xz}}+\sqrt{\dfrac{zx}{xy+yz}}+\sqrt{\dfrac{xy}{yz+zx}}\)

\(P=\dfrac{2yz}{2\sqrt{yz\left(xy+xz\right)}}+\dfrac{2zx}{2\sqrt{zx\left(xy+yz\right)}}+\dfrac{2xy}{2\sqrt{xy\left(yz+zx\right)}}\)

\(P\ge\dfrac{2yz}{xy+yz+zx}+\dfrac{2zx}{xy+yz+zx}+\dfrac{2xy}{xy+yz+zx}=2\)

Dấu "=" không xảy ra nên \(P>2\)