K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 12 2017

Lời giải:

TH1: \(x,y\) đều dương.

Xét hiệu:

\(2(x^{2018}+y^{2018})-(x+y)(x^{2017}+y^{2017})=x^{2018}+y^{2018}-xy^{2017}-x^{2017}y\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=x^{2017}(x-y)-y^{2017}(x-y)\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x^{2017}-y^{2017})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x-y)(x^{2016}+...+y^{2016})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)^2(x^{2016}+...+y^{2016})\geq 0\) với mọi \(x,y>0\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})\geq 2(x^{2017}+y^{2017})\)

\(\Leftrightarrow x^{2018}+y^{2018}\geq x^{2017}+y^{2017}\) (1)

TH2: \(x,y\) trái dấu. Giả sử \(x>0; y< 0\)

\(x+y=2\Rightarrow x=2-y> 2\)

\(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)\)

Vì \(x>2 \Rightarrow x^{2017}(x-1)>0\)

\(y< 0\Rightarrow y^{2017}< 0; y-1< 0\Rightarrow y^{2017}(y-1)>0\)

Do đó: \(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)>0\)

\(\Rightarrow x^{2018}+y^{2018}> x^{2017}+y^{2017}\) (2)

Từ (1),(2) ta có đpcm.

25 tháng 12 2017

help me, please!!!!

Akai Haruma Nguyễn Huy Tú Ace Legona soyeon_Tiểubàng giải Phương An,....

26 tháng 12 2017

Ta có:

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)    và x+y=2

Xét dấu =

Dấu ''='' xảy ra khi và chỉ khi

x=y=1

Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1

Hết.

Em mới học lớp 7 nên ko biết đúng ko

4 tháng 1 2018

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)

\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)

\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)

\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)

\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)

Đến đây dễ rồi bạn tự làm tiếp nhê

7 tháng 3 2020

Làm tiếp kiểu j bạn???

15 tháng 12 2017

2x2+y2+9=6x+2xy

=>2x2+y2+9-6x-2xy=0

=>(x2-2xy+y2)+(x2-6x+9)=0

=>(x-y)2+(x-3)2=0

do (x-y)2 ≥ 0 ∀ x,y

(x-3)2 ≥ 0 ∀x

=>(x-y)2+(x-3)2 =0 khi

=>\(\left[{}\begin{matrix}x-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=x=3\\x=3\end{matrix}\right.\)

thay x=3 và y=3

Q=32017.32018-32018. 32017+\(\dfrac{1}{9}.3.3\)

Q=1

15 tháng 12 2017

bạn giỏi quá!

yeu

4 tháng 1 2018

Ta có BĐT cần chứng minh <=>\(\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\Leftrightarrow x^{2018}+y^{2018}+xy^{2017}+x^{2017}y\le2\left(x^{2018}+y^{2018}\right)\)

<=>\(xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

<=>\(\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

vì vai trò của x,y như nhau , giả sử \(x\ge y\Rightarrow x^{2017}\ge y^{2017}\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

=> BĐT cần chứng minh luôn đúng 

=> ĐPCM 

dâu = xảy ra <=> x=y=1

^_^