K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Ta có BĐT cần chứng minh <=>\(\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\Leftrightarrow x^{2018}+y^{2018}+xy^{2017}+x^{2017}y\le2\left(x^{2018}+y^{2018}\right)\)

<=>\(xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

<=>\(\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

vì vai trò của x,y như nhau , giả sử \(x\ge y\Rightarrow x^{2017}\ge y^{2017}\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

=> BĐT cần chứng minh luôn đúng 

=> ĐPCM 

dâu = xảy ra <=> x=y=1

^_^

4 tháng 1 2018

x-y = 2 => x=y+2

Thay x=y+2 vào x+y+2 được :

y+2+y = 2

=> 2y+2 = 2

=> 2y = 2-2 = 0

=> y = 0 : 2 = 0

=> x = y+2 = 0+2 = 2

Vậy .........

Tk mk nha

4 tháng 1 2018

Ta có: x + y = 2

          x - y = 2

=> x + y - (x - y) = 2 - 2

=> x + y - x + y = 0

=> 2x = 0

=> x = 0

Mà x + y = 2  => y = 2 - x = 2 - 0 = 2

Vậy x = 0 ; y = 2

16 tháng 1 2018

Ta có : 3x = 4y = 5z \(\Leftrightarrow\)\(\frac{3}{x}\)\(\frac{4}{y}\)\(\frac{5}{z}\)

Theo dãy tỉ số bằng nhau ta có :

\(\frac{3}{x}\)\(\frac{4}{y}\)\(\frac{5}{z}\)\(\Leftrightarrow\)\(\frac{3+4+5}{x+y+z}\)\(\Leftrightarrow\)\(\frac{4}{3}\)

\(\Rightarrow\)x = \(\frac{3}{2}\) ; y = 3 ; z = \(\frac{15}{4}\)

Vậy x = \(\frac{3}{2}\); y =3  ; z = \(\frac{15}{4}\)

25 tháng 12 2017

help me, please!!!!

Akai Haruma Nguyễn Huy Tú Ace Legona soyeon_Tiểubàng giải Phương An,....

6 tháng 1 2018

không được câu kiểu đó cộng tác viên mà vậy à -_-

6 tháng 1 2018

Với \(z=10\)ta có hệ pt \(\hept{\begin{cases}x+y=-10\\x-y=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-21}{2}\\y=\frac{1}{2}\end{cases}}\)

4 tháng 1 2018

x là:   (15,6-14):2=0,8

y là :  15,6-0,8=14,8

vậy x=0,8;  y=14,8

x=0,8 : y =14,8

26 tháng 12 2017

Ta có:

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)    và x+y=2

Xét dấu =

Dấu ''='' xảy ra khi và chỉ khi

x=y=1

Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1

Hết.

Em mới học lớp 7 nên ko biết đúng ko

AH
Akai Haruma
Giáo viên
25 tháng 12 2017

Lời giải:

TH1: \(x,y\) đều dương.

Xét hiệu:

\(2(x^{2018}+y^{2018})-(x+y)(x^{2017}+y^{2017})=x^{2018}+y^{2018}-xy^{2017}-x^{2017}y\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=x^{2017}(x-y)-y^{2017}(x-y)\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x^{2017}-y^{2017})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x-y)(x^{2016}+...+y^{2016})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)^2(x^{2016}+...+y^{2016})\geq 0\) với mọi \(x,y>0\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})\geq 2(x^{2017}+y^{2017})\)

\(\Leftrightarrow x^{2018}+y^{2018}\geq x^{2017}+y^{2017}\) (1)

TH2: \(x,y\) trái dấu. Giả sử \(x>0; y< 0\)

\(x+y=2\Rightarrow x=2-y> 2\)

\(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)\)

Vì \(x>2 \Rightarrow x^{2017}(x-1)>0\)

\(y< 0\Rightarrow y^{2017}< 0; y-1< 0\Rightarrow y^{2017}(y-1)>0\)

Do đó: \(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)>0\)

\(\Rightarrow x^{2018}+y^{2018}> x^{2017}+y^{2017}\) (2)

Từ (1),(2) ta có đpcm.