Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2018}+y^{2018}\ge x^{2017}+y^{2017}\)
\(\Rightarrow\left(x+y\right)\left(x^{2018}+y^{2018}\right)\ge\left(x+y\right)\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)\ge2\left(x^{2017}+y^{2017}\right)\)
\(\Rightarrow2\left(x^{2018}+y^{2018}\right)-\left(x+y\right)\left(x^{2017}+y^{2017}\right)\ge0\)
\(\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\)\(\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\x^{2017}-y^{2017}\ge0\end{matrix}\right.\)
\(\Rightarrow x\ge y\)
Vậy với \(x\ge y\Rightarrowđpcm\)
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)
\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)
\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)
\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)
\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)
Đến đây dễ rồi bạn tự làm tiếp nhê
2x2+y2+9=6x+2xy
=>2x2+y2+9-6x-2xy=0
=>(x2-2xy+y2)+(x2-6x+9)=0
=>(x-y)2+(x-3)2=0
do (x-y)2 ≥ 0 ∀ x,y
(x-3)2 ≥ 0 ∀x
=>(x-y)2+(x-3)2 =0 khi
=>\(\left[{}\begin{matrix}x-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=x=3\\x=3\end{matrix}\right.\)
thay x=3 và y=3
Q=32017.32018-32018. 32017+\(\dfrac{1}{9}.3.3\)
Q=1
Ta có:
\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\) và x+y=2
Xét dấu =
Dấu ''='' xảy ra khi và chỉ khi
x=y=1
Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1
Hết.
Em mới học lớp 7 nên ko biết đúng ko
Vì \(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)
\(\Rightarrow x=y=1\) hoặc \(x=y=0\)
Với \(x=y=1\)
\(S=2018\left(1^{2018}+1^{2018}\right)\)
\(S=2018.2\)
\(S=4036\)
Với \(x=y=0\)
\(S=2018\left(0^{2018}+0^{2018}\right)\)
\(S=0\)