K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

S không phải là số tự nhiên vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{481}{280}\)nên không thể đổi thành số tự nhiên mà chỉ có thể đổi thành số thập phân đó là 1,717857143

Vậy h cho mình nha Trần Phúc Đông

7 tháng 7 2017

Ta có

\(\frac{1}{2}+\frac{2}{4}+\frac{4}{8}< S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}< \frac{1}{2}+\frac{3}{3}+\frac{3}{6}.\)

\(\Leftrightarrow1< S< 2\)

\(\Rightarrow S\notin N\)

1. Tính bằng cách hợp lý a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\) b) S = \(2+2^2+2^3+...+2^9\)2. a) Tìm x biết \(\frac{x+350}{x}+315=92\cdot4-27\)b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)3.a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4. Tìm a...
Đọc tiếp

1. Tính bằng cách hợp lý

 a) \(\frac{-1}{5}\cdot\frac{6}{7}+\frac{3}{7}\cdot\frac{3}{5}+\frac{2^5\cdot27}{3^3\cdot64}\)

 b) S = \(2+2^2+2^3+...+2^9\)

2. 

a) Tìm x biết \(\frac{x+350}{x}+315=92\cdot4-27\)

b) Tìm x,y là số nguyên biết \(\frac{2x+1}{3}=\frac{2}{y}\)

3.

a) Viết các phân số tự nhiên liên tiếp từ 10 đến 99 ta được số M. Hỏi M có chia hết cho 3, chia hết cho 9 không ?

b) Số tự nhiên a chia cho 5 dư 3, chia 9 dư 5, chia 7 dư 4. Tìm a biết a nhỏ nhất.

4. 

So sánh S và 1 biết S= \(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\)

5. Cho xOy kề bù với góc yOz, biết góc yOz gấp đôi yOx.

a) Tính số đo mỗi góc

b) Gọi Om là tia phân giác của góc yOz. Tia Oy có là tia phân giác của góc xOm không ? Vì sao ?

c. Vẽ tia Ot sao cho xOt = 20 độ. Tính góc yOt

6.Cho 5 điểm A, B, C, D, E. Cứ đi qua 2 điểm ta vẽ 1 đoạn thẳng. Gọi m là hệ số tam giác tạo thành.

a) Tính giá trị lớn nhất của m

b) Tính giá trị nhỏ nhất của m

2
12 tháng 4 2017

nhìn thôi đã ko muốn làm

12 tháng 4 2017

vậy còn cách đang từng câu hỏi 1 thôi

28 tháng 3 2019

\(S=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}>\frac{1}{101}+\frac{1}{101}+\frac{1}{101}+...\frac{1}{101}\)(97 phân số\(\frac{1}{101}\))

\(S=\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}>\frac{97}{101}\)\(\Rightarrow S< 1\)

Do \(0< S< 1\)nên \(S\)không phải là số tự nhiên

28 tháng 3 2019

cảm ơn hùng

12 tháng 1 2019

1 < S < 2

=> S ko phải là số tự nhiên

11 tháng 6 2020

1< S< 2

=> S không phải số tự nhiên

15 tháng 4 2015

giữa (a+1 và 5) là dấu chia hết:

giữa ( "}" và a+1); trước (a+1;a) là dấu suy ra (a+1 và a cách nhau 1 dòng)

giữa (a+1 và B(4;5;8));(a+1 vafB(40));(a và {-1;........});(a và {119;159}) là dấu thuộc bạn nhé!  ^-^

2 tháng 5 2017

2/

S = 2 + 22 + 23 +...+ 299

= (2+22+23) +...+ (297+298+299)

= 2(1+2+22)+...+297(1+2+22)

= 2.7 +...+ 297.7

= 7(2+...+297) chia hết cho 7

S = 2+22+23+...+299

= (2+22+23+24+25)+...+(295+296+297+298+299)

= 2(1+2+22+23+24)+...+295(1+2+22+23+24)

= 2.31+...+295.31

= 31(2+...+295) chia hết cho 31

3/

A = 1+5+52+....+5100 (1)

5A = 5+52+53+...+5101 (2)

Lấy (2) - (1) ta được

4A = 5101 - 1

A = \(\frac{5^{101}-1}{4}\)

2 tháng 5 2017

4/

Đặt A là tên của biểu thức trên

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

........

\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)

\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)

Vậy...

5/

a, Gọi UCLN(n+1,2n+3) = d

Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d

           2n+3 chia hết cho d

=> 2n+2 - (2n+3) chia hết cho d

=> -1 chia hết cho d => d = {-1;1}

Vậy...

b, Gọi UCLN(2n+3,4n+8) = d

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d 

=> 4n+6 - (4n+8) chia hết cho d

=> -2 chia hết cho d => d = {1;-1;2;-2}

Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}

Vậy...

22 tháng 4 2017

54444

10 tháng 3 2019

\(b.\frac{1}{3}+\frac{3}{35}< \frac{x}{210}< \frac{4}{7}+\frac{3}{5}+\frac{1}{3}\)

\(\Leftrightarrow\frac{35+9}{105}< \frac{x}{210}< \frac{60+63+35}{105}\)

\(\Leftrightarrow\frac{44}{105}< \frac{x}{210}< \frac{158}{105}\)

\(\Leftrightarrow\frac{88}{210}< \frac{x}{210}< \frac{316}{210}\)

Suy ra \(x\in\left\{89;90;100;...;313;314;315\right\}\)

\(c.\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{19}-\frac{1}{21}\right)-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\frac{1}{11}-\frac{1}{21}-x+\frac{221}{231}=\frac{4}{3}\)

\(\Leftrightarrow\frac{21-11-231x+221}{231}=\frac{308}{231}\)

\(\Leftrightarrow-231x=308-21+11-221\)

\(\Leftrightarrow-231x=77\)

\(\Leftrightarrow x=-\frac{77}{231}=-\frac{1}{3}\)

^^

6 tháng 7 2017

\(\frac{1}{4^2}>0;\frac{1}{5^2}>0;...;\frac{1}{50^2}>0\Rightarrow S>0\)

\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{49\cdot50}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{49}-\frac{1}{50}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{1}{3}-\frac{1}{50}\)

\(\Leftrightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}< \frac{47}{150}< 1\)

=> 0 < S < 1 => S không phải số nguyên