Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cộng vế với vế của 3 đẳng thức đã cho ta được:
\(x+y+z-2\sqrt{y+2012}-2\sqrt{z-2013}-2\sqrt{x-2}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2012-2\sqrt{y+2012}+1\right)+\left(z-2013+2\sqrt{z-2013}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2012}-1\right)^2+\left(\sqrt{z-2013}-1\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(\sqrt{x-2}-1\right)^2=0\\\left(\sqrt{y+2012}-1\right)^2=0\\\left(\sqrt{z-2013}-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y+2012}-1=0\\\sqrt{z-2013}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{y+2012}=1\\\sqrt{z-2013}=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2011\\z=2014\end{matrix}\right.\)
Thay vào C ta được:
C = (3 - 4)2016 + (-2011 + 2012)2017 + (2014 - 2013)2018
C = 1 + 1 + 1 = 3
THÊM
Cho x, y, z thõa mãn đồng thời: \(3x-2y-2\sqrt{y+2012}+1=0;3y-2z-2\sqrt{z-2013}+1=0;3z-2x-2\sqrt{x-2-2=0.}\)Tính \(C=\left(x-4\right)^{2016}+\left(y+2012\right)^{2017}+\left(z-2013\right)^{2018}\)Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
a) Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=\left(x-y\right)\left(x-y+2\right)+37\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=7\cdot\left(7+2\right)+37=7\cdot9+37=100\)
Vậy: Khi x-y=7 thì A=100
b) Ta có: \(x+y=2\)
\(\Leftrightarrow\left(x+y\right)^2=4\)
\(\Leftrightarrow x^2+y^2+2xy=4\)
\(\Leftrightarrow2xy+10=4\)
\(\Leftrightarrow2xy=-6\)
\(\Leftrightarrow xy=-3\)
Ta có: \(A=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)(2)
Thay x+y=2; \(x^2+y^2=10\) và xy=-3 vào biểu thức (2), ta được:
\(A=2\cdot\left(10+3\right)=2\cdot13=26\)
Vậy: Khi x+y=2 và \(x^2+y^2=10\) thì A=26
\(\Rightarrow A=x^2+2x+y^2-2y-2xy+37=x^2-2xy+y^2+2\left(x-y\right)+37=\left(x-y\right)^2+2\left(x-y\right)+37=7^2+2\cdot7+37=100\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)=\left(x+y\right)\left[x^2+y^2-\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}\right]=2\cdot\left[10+3\right]=2\cdot13=26\) \(\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\) \(\Rightarrow P=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)=-\dfrac{z}{y}\cdot\dfrac{-x}{z}\cdot-\dfrac{y}{x}=-1\)
x^2+y^2+z^2/a^2+b^2+c^2 = x^2/a^2 + y^2/b^2 + z^2/c^2
<=> x^2+y^2+z^2 = x^2.b^2/a^2 + x^2.c^a/a^2 + y^2.a^2/b^2 + y^2.c^2/b^2 + z^2.a^2/c^2 + z^2.b^2/c^2 + x^2 + y^2 + z^2
<=> x^2.b^2/a^2 + x^2.c^2/a^2 + y^2.a^2/b^2 + y^2.c^2/b^2 + z^2.z^2/c^2 + z^2.b^2/c^2 = 0 (1)
Ta thấy VT của (1) >= 0 = VP của (1)
Dấu "=" xảy ra <=> x=y=z=0
Khi đó : x^2013+y^2013+z^2013/2012 = 0
Tk mk nha
bn ơi bn trình bày hẳn ra đi, chỗ nào phân số mà tử là đa thức thì bn để trong ngoặc hộ mk
bài lm này mk đọc ko có hiểu