K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2016

bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 =>  x-1/3=y-2/4=z-3/5 

áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1

do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương t

 

 

24 tháng 3 2021

Bài 1: 

a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )

13 tháng 7 2019

#)Giải :

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x+y+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+y+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+y+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

Ta có : 

\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\) Thay \(\left(1\right)\) vào ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow x=\frac{1}{2}\)

\(\left(\cdot\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\) Thay \(\left(2\right)\) vào ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow y=\frac{5}{6}\)

\(\left(\cdot\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

phải có 2 trường hợp

TH1 x+y+x=0

TH2 x+y+z khác 0 chứ

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

7 tháng 1 2017

Giải
Ta có: \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Rightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{z+x-y-z}{10-6}=\frac{x-y}{4}=\frac{x+y-z-x}{15-10}=\frac{y-z}{5}\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

Vậy...