K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

Ta có công thức (a+b)2=(a+b)(a+b)=a2+2ab+b2 

            Vậy a2+2ab+b2 cũng giống như x2+2xy+y2(chỉ khác ab;xy)

   Do đó ta có:

A=x2+2xy+y2-4x-4y+1

A=(x+y)2-4.(x+y)+1

A=32-4.3+1

A=9-12+1

A=-2

Vậy A=-2

14 tháng 7 2016

\(x^2+2xy+y^2-4x-4y+1=x^2+xy+xy+y^2-4\left(x+y\right)=x\left(x+y\right)+y\left(x+y\right)-4\left(x+y\right)+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-4\times3+1=9-12+1=-2\)

a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)

\(=3x^2+3y^2=3\)

b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)

c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)

d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)

=9-12+1

=-2

31 tháng 3 2021

\(Q=23x^3y^3+17x^3y^3-50x^3y^3+(-2xy)^3\)

\(Q=23x^3y^3+17x^3y^3-50x^3y^3+(-8)x^3y^3\)

\(Q=(23+17-50-8)x^3y^3\)

\(Q=-18x^3y^3\)

 ---

\(|x-1|=1\)

\(TH1:\) \(x-1=1\)

⇒ \(x=1+1=2\)

\(TH2: x-1=-1\)

⇒ \(x=(-1)+1=0\)

---

Tính giá trị của \(Q\) tại \(|x-1|=1\)\(y=\dfrac{-1}{2}\)

\(TH1: x=2; y=\dfrac{-1}{2}\)

\(Q=-18.2^3.(\dfrac{-1}{2})^3\)

\(Q=-18.8.(\dfrac{-1}{8})^3\)

\(Q=36\)

\(TH1: x=0; y=\dfrac{-1}{2}\)

\(Q=-18.0^3.(\dfrac{-1}{2})^3\)

\(Q=0\)

Vậy \(Q\) ∈ {\({36;0}\)}

Ta có: \(Q=23x^2y^3+17x^3y^3-50x^3y^3+\left(-2xy\right)^3\)

\(=-10x^3y^3-8x^3y^3\)

\(=-18x^3y^3\)

Ta có: |x-1|=1

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Thay x=2 và y=-1/2 vào Q, ta được:

\(Q=-18\cdot2^3\cdot\left(-\dfrac{1}{2}\right)^3=-18\cdot8\cdot\dfrac{-1}{8}=18\)

Thay x=0 và y=-1/2 vào Q, ta được:

\(Q=-18\cdot0^3\cdot\left(-\dfrac{1}{2}\right)^3=0\)

25 tháng 6 2023

a, (3 - \(x\))(4y + 1) = 20

   Ư(20) = { -20; -10; -5; -4; -2; -1; 1; 2; 4; 5; 10; 20}

Lập bảng ta có:

\(3-x\) -20 -10 -5 -4 -2 -1 1 2 4 5 10 20
\(x\) 23  13 8 7 5 4 2 1 -1 -2 -7 -17
4\(y\) + 1 -1 -2 -4 -5 -10 -20 20 10 5 4 2 1
\(y\) -1/2 -3/4 -5/4 -6/4 -11/4 -21/4 19/4 9/4 1 3/4 1/4 0

Vậy các cặp \(x;y\) nguyên thỏa mãn đề bài là:

(\(x;y\)) =(-1; 1); (-17; 0)

 

 

25 tháng 6 2023

b, \(x\left(y+2\right)\)+ 2\(y\) = 6

    \(x\) = \(\dfrac{6-2y}{y+2}\)

\(x\in\) Z ⇔ 6 - \(2y⋮\) \(y\) + 2 ⇒-(2y + 4) +10 ⋮ \(y\) + 2 ⇒ -2(\(y\)+2) +10 ⋮ \(y\)+2

⇒ 10 ⋮ \(y\) + 2

Ư(10) = { -10; -5; -2; -1; 1; 2; 5; 10}

Lập bảng ta có:

\(y+2\) -10 -5 -2 -1 1 2 5 10
\(y\) -12 -7 -4 -3 -1 0 3 8
\(x=\) \(\dfrac{6-2y}{y+2}\) -3 -4 -7 -12 8 3 0 -1

 Theo bảng trên ta có các cặp \(x;y\)

 nguyên thỏa mãn đề bài lần lượt là:

(\(x;y\)    ) =(-3; -12); (-4; -7); (-12; -3); (8; -1); (3; 0); (0;3 (-1; 8)                           

 

11 tháng 8 2023

`a,x^3 - 3x^2 + 1 - 3x`

`=x^3 + 1 - 3x^2 - 3x`

`=(x^3 + 1) - 3x(x+1)`

`=(x+1)(x^2 - x + 1) - 3x(x+1)`

`=(x+1)(x^2 - x + 1 - 3x)`

`=(x+1)(x^2 - 4x + 1)`

`b,x^2 + 4x - 2xy - 4y + y^2`

`=(x^2 -2xy + y^2) + (4x-4y)`

`=(x-y)^2 + 4(x-y)`

`=(x-y)(x-y+4)`

`c,3x^2 -6xy + 3y^2 - 12z^2`

`=3(x^2 -2xy +y^2 - 4z^2)`

`=3[(x-y)^2 - (2z)^2]`

`=3(x-y-2z)(x-y+2z)`
 

a: =x^3+1-3x^2-3x

=(x+1)(x^2-x+1)-3x(x+1)

=(x+1)(x^2-x+1-3x)

=(x+1)(x^2-4x+1)

b: =x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

c: =3(x^2-2xy+y^2-4z^2)

=3[(x-y)^2-4z^2]

=3(x-y-2z)(x-y+2z)

26 tháng 10 2018

M – N = (x2 – 2xy + y2)– (y2 +2xy +x2 + 1)

= x2 – 2xy + y2 – y2 – 2xy – x2 – 1

= (x2– x2) + (y2 – y2) + (– 2xy – 2xy) – 1

= 0 + 0 – 4xy – 1

= – 4xy – 1.

11 tháng 4 2018

M + N = (x2 – 2xy + y2)+ (y2 + 2xy + x2 + 1)

= x2 – 2xy + y2 + y2 + 2xy + x2 + 1

= (x2+ x2) + (y2 + y2) + (– 2xy+ 2xy) + 1

= 2x2 + 2y2 + 0 + 1

= 2x2 + 2y2 +1

9 tháng 7 2023

Bài 3:

a, (\(x\)+y+z)2

=((\(x\)+y) +z)2

= (\(x\) + y)2 + 2(\(x\) + y)z + z2

\(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2

=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz

 

9 tháng 7 2023

b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))

\(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3 

Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé