Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\)
+) Đặt \(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)\left(4-x\right)=0\)
\(\Leftrightarrow1\le x\le4\)
+) Đặt \(C=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow2\le x\le3\)
\(\Rightarrow A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge4\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\hept{\begin{cases}1\le x\le4\\2\le x\le3\end{cases}\Leftrightarrow2\le x\le3}\)
Vậy.................
\(A=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)+\dfrac{39}{20}=5\left(x-\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)
\(A_{min}=\dfrac{39}{20}\) khi \(x=\dfrac{1}{10}\)
\(B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+2\left(y^2-\dfrac{1}{2}y+\dfrac{1}{16}\right)-\dfrac{269}{24}=3\left(x+\dfrac{1}{6}\right)^2+2\left(y-\dfrac{1}{4}\right)^2-\dfrac{269}{24}\ge-\dfrac{269}{24}\)
\(B_{min}=-\dfrac{269}{24}\) khi \(x=-\dfrac{1}{6};y=\dfrac{1}{4}\)
A= 5x2-xz+2
A= (√5.x)2-2.√5.x.\(\dfrac{\text{√5}}{10}\)+\(\dfrac{1}{20}+\dfrac{39}{20}\)
A=(√5.x-\(\dfrac{\text{√5}}{10}\))2+\(\dfrac{39}{20}\)≥\(\dfrac{39}{20}\)
Dấu "=" xảy ra ⇔ (√5.x-\(\dfrac{\text{√5}}{10}\))=0
⇔ √5.x=\(\dfrac{\text{√5}}{10}\) ⇔ x=\(\dfrac{1}{10}\)
Vậy GTNN của A=\(\dfrac{39}{20}\) tại x=\(\dfrac{1}{10}\)
\(C=\left(x^2+\dfrac{y^2}{4}+4-xy+4x-2y\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+1011\)
\(=\left(x-\dfrac{y}{2}+2\right)^2+\dfrac{3}{4}\left(y-2\right)^2+1011\ge1011\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-1;2\right)\)
a) Ta có: \(B=x^2+4y^2+4x-4y\)
\(=\left(x^2+4x+4\right)+\left(4y^2-4y+1\right)-5\)
\(=\left(x+2\right)^2+\left(2y-1\right)^2-5\ge-5\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-2;\dfrac{1}{2}\right)\)
Lời giải:
Vì $0< x< 1$ nên $x; 1-x>0$
Áp dụng BĐT Bunhiacopxky ta có:
\(\left(\frac{1}{x}+\frac{2}{1-x}\right)[x+(1-x)]\geq (1+\sqrt{2})^2\)
\(\Leftrightarrow A.1\geq (1+\sqrt{2})^2\)
\(\Leftrightarrow A\geq (1+\sqrt{2})^2\)
Vậy GTNN của $A$ là \((1+\sqrt{2})^2\). Dấu "=" xảy ra khi \(\frac{1}{x}=\frac{\sqrt{2}}{1-x}\Leftrightarrow x=\sqrt{2}-1\)
\(a,A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x^2+2\cdot x\cdot2+2^2\right)+2\)
\(=-\left(x+2\right)^2+2\)
Ta thấy: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+2\le2\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_A=2\) khi \(x=-2\).
Cậu xem lại giúp mình có sai đề bài không nhé!
#\(Toru\)
Ta co:\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\) ; \(xyz\le\frac{\left(x+y+z\right)^3}{27}=\frac{27}{27}=1\)
\(P=x^4+y^4+z^4+12\left(1-z-y+yz-x+xz+xy-xyz\right)\)
\(=x^4+y^4+z^4+12-12xyz-12\left(x+y+z\right)+12\left(xy+yz+zx\right)\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}+12-12.\frac{\left(x+y+z\right)^3}{27}-12.3+12\left(xy+yz+zx\right)\)
\(\ge3+12-12.1-36+4.\left(xy+yz+zx\right)\left(x+y+z\right)\)
\(\ge-33+4.\left(xy+yz+zx\right)\left(\frac{x+y+z}{xyz}\right)\)
\(=-33+4.\left(xy+yz+zx\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge-33+4\left(xy.\frac{1}{xy}+yz.\frac{1}{yz}+zx.\frac{1}{zx}\right)^2\)
\(=-33+4\left(1+1+1\right)^2=-33+36=3\)
Dau '=' xay ra khi \(x=y=z=1\)
Vay \(P_{min}=3\)khi \(x=y=z=1\)
a) \(\left(x-5\right)^2=\left(3+2x\right)^2\)
\(\Rightarrow\left(3+2x\right)^2-\left(x-5\right)^2=0\)
\(\Rightarrow\left(3+2x+x-5\right)\left(3+2x-x+5\right)=0\)
\(\Rightarrow\left(3x-2\right)\left(x+8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x-2=0\\x+8=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-8\end{matrix}\right.\)
b) \(27x^3-54x^2+36x=9\)
\(\Rightarrow27x^3-54x^2+36x-9=0\)
\(\Rightarrow27x^3-54x^2+36x-8+8-9=0\)
\(\Rightarrow\left(3x-2\right)^3-1=0\)
\(\Rightarrow\left(3x-2-1\right)\left[\left(3x-2\right)^2+3x-2+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2\right)^2+3x-2+\dfrac{1}{4}-\dfrac{1}{4}+1\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-2+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]=0\)
\(\Rightarrow\left(3x-3\right)\left[\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]=0\left(1\right)\)
mà \(\left(3x-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)
\(\left(1\right)\Rightarrow3x-3=0\Rightarrow3x=3\Rightarrow x=1\)
(\(x-5\))2 = (3 +2\(x\))2 ⇒ \(\left[{}\begin{matrix}x-5=3+2x\\x-5=-3-2x\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-8\\x=\dfrac{2}{3}\end{matrix}\right.\) vậy \(x\in\){-8; \(\dfrac{2}{3}\)}
27\(x^3\) - 54\(x^2\) + 36\(x\) = 9
27\(x^3\) - 54\(x^2\) + 36\(x\) - 8 = 1
(3\(x\) - 2)3 = 1 ⇒ 3\(x\) - 2 = 1 ⇒ \(x\) = 1