K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 2 2019

Lời giải:

Vì $0< x< 1$ nên $x; 1-x>0$

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{1}{x}+\frac{2}{1-x}\right)[x+(1-x)]\geq (1+\sqrt{2})^2\)

\(\Leftrightarrow A.1\geq (1+\sqrt{2})^2\)

\(\Leftrightarrow A\geq (1+\sqrt{2})^2\)

Vậy GTNN của $A$ là \((1+\sqrt{2})^2\). Dấu "=" xảy ra khi \(\frac{1}{x}=\frac{\sqrt{2}}{1-x}\Leftrightarrow x=\sqrt{2}-1\)

30 tháng 4 2021

Đk: \(x\ne0,x\ne1\)

Ta có: \(A=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x\left(x-1\right)}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}.\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)\(=\dfrac{x^2}{x-1}\)

Để A<0 \(\Leftrightarrow\dfrac{x^2}{x-1}< 0\)

\(\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)   (vì \(x^2>0\))

Mà \(\left\{{}\begin{matrix}x\ne0\\x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x\ne0\end{matrix}\right.\)

 

25 tháng 2 2021

\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right):\dfrac{1-2x}{x^2-1}\)

\(A=\dfrac{x+1+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}:\dfrac{1-2x}{x^2-1}\)

\(A=\dfrac{-2}{\left(1-x\right)\left(1+x\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(A=\dfrac{-2x+2}{1-2x}\)

\(A=0\)

\(\dfrac{-2x+2}{1-2x}>0\)

\(-2x+1>0\)

\(-2x>-1\)

\(x< \dfrac{1}{2}\)

Vậy x<\(\dfrac{1}{2}\) thì A>0

3 tháng 10 2021

\(a,A=\dfrac{x+1+2-2x+5-x}{\left(1-x\right)\left(x+1\right)}\cdot\dfrac{\left(1-x\right)\left(x+1\right)}{2x-1}\left(x\ne1;x\ne-1;x\ne\dfrac{1}{2}\right)\\ A=\dfrac{8-2x}{2x-1}\\ b,A>0\Leftrightarrow\dfrac{8-2x}{2x-1}>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}8-2x>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}8-2x< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 4\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x>4\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x< 4\\x\in\varnothing\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 4\)

3 tháng 10 2021

Bạn ghi lại câu b cho mình đc ko, câu b bị mất 1 đoạn ở dưới rồi

22 tháng 11 2021

ĐKXĐ: \(x\ne-3,x\ne-2,x\ne1\)

\(A=\dfrac{\left(2-x\right)\left(x+2\right)-\left(3-x\right)\left(x+3\right)+2-x}{\left(x+3\right)\left(x+2\right)}:\dfrac{x-1-x}{x-1}\)

\(=\dfrac{-\left(x+3\right)}{\left(x+3\right)\left(x+2\right)}.\left(1-x\right)=\dfrac{x-1}{x+2}\)

\(A=0\Leftrightarrow\dfrac{x-1}{x+2}=0\Leftrightarrow x=1\left(ktm\right)\Leftrightarrow S=\varnothing\)

a: \(P=\dfrac{2x-2-3x-3+x+7}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)

\(=\dfrac{2}{1-2x}\)

BT1:   a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)- \(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)+ \(\dfrac{3}{x}\)= \(\dfrac{x^2+2}{x^2-x}\)BT2: a) Cho a>b, chứng minh rằng 2a+1>2b-3b) Tìm x để giá trị của biểu thức 3x-1 ≤  giá trị biểu thức x+2c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x)...
Đọc tiếp

BT1:   

a) 2x-1=0 ; b) 3x-2=5+x ; c) 2(x-3)-4=3(1+x)-5x ; d) \(\dfrac{x+1}{2}\)\(\dfrac{2x}{3}\)=1 ; e) x(x-2)+3(x-2)=0 ; f) \(\dfrac{x+1}{x-1}\)\(\dfrac{3}{x}\)\(\dfrac{x^2+2}{x^2-x}\)

BT2: 

a) Cho a>b, chứng minh rằng 2a+1>2b-3

b) Tìm x để giá trị của biểu thức 3x-1 ≤  giá trị biểu thức x+2

c) Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số (mng giúp mình giải phương trình thôi nha)

2x+3>0 ; 3x+1<x-4 ; 2(x+1)+3≥ 3(5-x) ; \(\dfrac{x}{3}\)-\(\dfrac{x+1}{5}\)>1

BT3: Giải bài toán bằng cách lập phương trình

 1 ô tô đi từ A đến B với vận tốc 50km/h. Đến B, ô tô nghỉ lại 1h, sau đó quay trở về A với vận tốc 60km/h. Tổng thời gian đi và về(gồm thời gian nghỉ lại) là 6h30p. Tính quãng đường AB?

 Mng giúp mình với mai mình kiểm tra rồi ạ, mình cảm ơn

0
AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

AH
Akai Haruma
Giáo viên
27 tháng 4 2022

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$

$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$

Áp dụng BĐT AM-GM:

$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$

$\Rightarrow \frac{2}{xy}\geq 8$

Cộng 2 BĐT trên lại:

$P\geq 16+8=24$

Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$

2/xy<=1/x^2+1/y^2=1/2

=>xy>=4

Dấu = xảy ra khi x=y=2

(x+y)^2>=4xy>=16

=>x+y>=4

Dấu = xảy ra khi x=y=2

=>x+y+xy+2023>=2023+4+4=2031 

Dấu = xảy ra khi x=y=2

21 tháng 1 2022

 

 

 

 

a)B=x+5 +x +x-5/x(x-5)=3x/x(x-5)=3/x-5

        b)đkxđ   x khác 5

21 tháng 1 2022

 

a)B=x+5 +x +x-5/x(x-5)=3x/x(x-5)=3/x-5

        b)đkxđ   x khác 5