K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2018

bài của bọn mk như này cx khá giống của bạn nên bạn có thể tham khảo :

Cho x,y thỏa √x+2+y3=√y+2+y3

Tìm gtnn của B= x2 +2xy-2y2 +2y+10

GIẢI

√x+2+y3=√y+2+y3 => x=y

ta có : B= x2 + 2xy - 2y2 + 2y + 10 <=> B=x2 +2x2 - 2x2 + 2x + 10

B = x2 + 2x +10

B = (x+1)2 + 9 >= 9 vì (x+1)2 >= 0 với ∀ x

=> min B = 9 <=> x=y=1

19 tháng 11 2018

Từ giả thiết chuyển vế liên hợp suy ra x=y

Thế xuống dưới là đc thôi

19 tháng 11 2018

trả lời thật vl

21 tháng 11 2018

ĐK: x, y>=-2

\(pt\Leftrightarrow\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+x^2+xy+y^2\right)=0\)

\(\Leftrightarrow x=y\)

Thay vào T=\(x^2+2x^2-2x^2+2x+10=x^2+2x+1+9=\left(x+1\right)^2+9\ge9\)

"=" xảy ra khi và chỉ khi x=y=-1 (thỏa mãn)

Vậy min T=9 khi x=y=-1

19 tháng 11 2018

ý em mới hoc lớp 8 thui

23 tháng 4 2021

2)

\(A=\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}+1}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}\)

    \(=\dfrac{\left(5\sqrt{a}-3\right)\left(\sqrt{a}+2\right)+\left(3\sqrt{a}+1\right)\left(\sqrt{a}-2\right)-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

    \(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}+\sqrt{a}-2-a^2-2\sqrt{a}-8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

    \(=\dfrac{-a^2+8a-16}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\dfrac{-\left(a-4\right)^2}{a-4}=4-a\)

1: Ta có: \(\left\{{}\begin{matrix}3x-y=2m-1\\x+y=3m+2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x=5m+1\\x+y=3m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=3m+2-x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m+1}{4}\\y=\dfrac{12m+8-5m-1}{4}=\dfrac{7m+7}{4}\end{matrix}\right.\)

Ta có: \(x^2+2y^2=9\)

\(\Leftrightarrow\left(\dfrac{5m+1}{4}\right)^2+2\cdot\left(\dfrac{7m+7}{4}\right)^2=9\)

\(\Leftrightarrow\dfrac{25m^2+10m+1}{16}+\dfrac{2\cdot\left(49m^2+98m+49\right)}{16}=9\)

\(\Leftrightarrow25m^2+10m+1+98m^2+196m+98-144=0\)

\(\Leftrightarrow123m^2+206m-45=0\)

Đến đây bạn tự làm nhé, chỉ cần giải phương trình bậc hai bằng delta thôi

11 tháng 9 2023

Ta có \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

\(\Leftrightarrow\sqrt{x+2}+x^3=\sqrt{y+2}+y^3\)

 Đặt \(f\left(x\right)=\sqrt{x+2}+x^3\). Ta chứng minh \(f\left(x\right)\) là hàm số đồng biến với \(x\ge-2\)

Giả sử \(f\left(a\right)>f\left(b\right)\) với \(a,b\ge-2\)

\(\Rightarrow\sqrt{a+2}+a^3>\sqrt{b+2}+b^3\)

\(\Leftrightarrow\sqrt{a+2}-\sqrt{b+2}+a^3-b^3>0\)

\(\Leftrightarrow\dfrac{a-b}{\sqrt{a+2}+\sqrt{b+2}}+\left(a-b\right)\left(a^2+ab+b^2\right)>0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2-ab+b^2\right)>0\)     (*)

 Dễ thấy \(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2+ab+b^2>0\) với mọi \(a,b\ge-2\)

 Do đó từ (*) suy ra \(a>b\).

 Vậy ta có \(f\left(a\right)>f\left(b\right)\Rightarrow a>b\). Do đó \(f\) là hàm số đồng biến.

 Theo trên, ta có \(f\left(x\right)=f\left(y\right)\Rightarrow x=y\)

 Thay vào biểu thức B, ta có \(B=x^2+2x+10\)

\(B=\left(x+1\right)^2+9\) \(\ge9\).

 Dấu "=" xảy ra \(\Leftrightarrow x=-1\) (nhận) \(\Rightarrow y=-1\)

 Vậy GTNN của B là 9, xảy ra khi \(\left(x;y\right)=\left(-1;-1\right)\)

 

NV
25 tháng 12 2020

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

4 tháng 1 2021

đúng mà

30 tháng 5 2017

\(\sqrt{x+2}\) +y3=\(\sqrt{y+2}\) +y3

\(\Rightarrow\) x=y

ta co :B=x2+2xy-2y2+2y+10 

\(\Leftrightarrow\)B=x2+2x2-2x2+2x+10

B=x2+2x+10

B=(x+1)2+9\(\ge\) 9 vì (x+1)2 \(\ge\)  0 vs \(\forall\) x

\(\Rightarrow\) minB=9 \(\Leftrightarrow\) x=y=-1

10 tháng 11 2020

Bài 1: 

ĐK: \(x,y\ge-2\)

Ta có: \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}=0\)

=> x-y=0=>x=y

Thay y=x vào B ta được:  B=x2+2x+10\(=\left(x+1\right)^2+9\ge9\forall x\ge-2\)

Dấu '=' xảy ra <=> x+1=0=>x=-1 (tmđk)

Vậy Min B =9 khi x=y=-1

9 tháng 8 2020

10x100=