K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2018

ý em mới hoc lớp 8 thui

21 tháng 11 2018

ĐK: x, y>=-2

\(pt\Leftrightarrow\sqrt{x+2}-\sqrt{y+2}+x^3-y^3=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(x^2+xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+2}+\sqrt{y+2}}+x^2+xy+y^2\right)=0\)

\(\Leftrightarrow x=y\)

Thay vào T=\(x^2+2x^2-2x^2+2x+10=x^2+2x+1+9=\left(x+1\right)^2+9\ge9\)

"=" xảy ra khi và chỉ khi x=y=-1 (thỏa mãn)

Vậy min T=9 khi x=y=-1

19 tháng 11 2018

Từ giả thiết chuyển vế liên hợp suy ra x=y

Thế xuống dưới là đc thôi

19 tháng 11 2018

trả lời thật vl

11 tháng 9 2023

Ta có \(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

\(\Leftrightarrow\sqrt{x+2}+x^3=\sqrt{y+2}+y^3\)

 Đặt \(f\left(x\right)=\sqrt{x+2}+x^3\). Ta chứng minh \(f\left(x\right)\) là hàm số đồng biến với \(x\ge-2\)

Giả sử \(f\left(a\right)>f\left(b\right)\) với \(a,b\ge-2\)

\(\Rightarrow\sqrt{a+2}+a^3>\sqrt{b+2}+b^3\)

\(\Leftrightarrow\sqrt{a+2}-\sqrt{b+2}+a^3-b^3>0\)

\(\Leftrightarrow\dfrac{a-b}{\sqrt{a+2}+\sqrt{b+2}}+\left(a-b\right)\left(a^2+ab+b^2\right)>0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2-ab+b^2\right)>0\)     (*)

 Dễ thấy \(\dfrac{1}{\sqrt{a+2}+\sqrt{b+2}}+a^2+ab+b^2>0\) với mọi \(a,b\ge-2\)

 Do đó từ (*) suy ra \(a>b\).

 Vậy ta có \(f\left(a\right)>f\left(b\right)\Rightarrow a>b\). Do đó \(f\) là hàm số đồng biến.

 Theo trên, ta có \(f\left(x\right)=f\left(y\right)\Rightarrow x=y\)

 Thay vào biểu thức B, ta có \(B=x^2+2x+10\)

\(B=\left(x+1\right)^2+9\) \(\ge9\).

 Dấu "=" xảy ra \(\Leftrightarrow x=-1\) (nhận) \(\Rightarrow y=-1\)

 Vậy GTNN của B là 9, xảy ra khi \(\left(x;y\right)=\left(-1;-1\right)\)

 

4 tháng 12 2017

\(\sqrt{x+2}-y^3=\sqrt{y+2}-x^3\)

\(\Leftrightarrow\left(\sqrt{x+2}-\sqrt{y+2}\right)+\left(x^3-y^3\right)=0\)

\(\Leftrightarrow\dfrac{x+2-y-2}{\sqrt{x+2}+\sqrt{y+2}}+\left(x-y\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\left(\dfrac{1}{\sqrt{x+2}+\sqrt{y+2}}+x^2-xy+y^2\right)\left(x-y\right)=0\)

⇒ x = y. Thay vào A

\(\Rightarrow A=x^2+2x^2-2x^2+2x+10\)

\(=\left(x+1\right)^2+9\ge9\)

Suy ra Min A = 9 ⇔ x = y = - 1

4 tháng 12 2017

\(A=x^2+2xy-2y^2+2y+10\)

\(\Leftrightarrow A=x^2+2xy+y^2-3y^2+2y-\dfrac{1}{3}+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x^2+2xy+y^2\right)-\left(3y^2-2y+\dfrac{1}{3}\right)+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x+y\right)^2-3\left(y^2-\dfrac{2}{3}y+\dfrac{1}{9}\right)+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x+y\right)^2-3\left[y^2-2.y.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\right]+\dfrac{31}{3}\)

\(\Leftrightarrow A=\left(x+y\right)^2-3\left(y-\dfrac{1}{3}\right)^2+\dfrac{31}{3}\)

Vậy GTNN của \(A=\dfrac{31}{3}\) khi \(\left\{{}\begin{matrix}x+y=0\\y-\dfrac{1}{3}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{1}{3}=0\\y=\dfrac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

NV
25 tháng 12 2020

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

4 tháng 1 2021

đúng mà