Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A+B= x^2y+xy^2 = xy.(x+y)
mà x+y chia hết cho 13
nên xy.(x+y) chia hết cho 13
hay A+B chia hết cho 13
a) \(8x+3y⋮11\Leftrightarrow7\left(8x+3y\right)⋮11\)(vì \(\left(7,11\right)=1\))
\(\Leftrightarrow\left[\left(56x-5.11x\right)+\left(21y-2.11y\right)\right]⋮11\)
\(\Leftrightarrow\left(x-y\right)⋮11\).
b) \(\left(4x+3y\right)⋮13\Leftrightarrow5\left(4x+3y\right)⋮13\)(vì \(\left(5,13\right)=1\))
\(\Leftrightarrow\left[\left(20x-13x\right)+\left(15y-13y\right)\right]⋮13\)
\(\Leftrightarrow\left(7x+2y\right)⋮13\).
BÀI 1:
\(A+B=x^2y+xy^2\)
\(\Leftrightarrow\)\(A+B=xy\left(x+y\right)\)
Vì \(x+y\)\(⋮\)\(13\)
nên \(xy\left(x+y\right)\)\(⋮\)\(13\)
Vậy \(A+B\)\(⋮\)\(13\) nếu \(x+y\)\(⋮\)\(13\)
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Ta có : a + 4b chia hết cho 13
Suy ra : 10(a + 4b) chia hết cho 13
<=> 10a + 40b chia hết cho 13
<=> [(10a + b) + 39b] chia hết cho 13
Mà b là số tự nhiên và 39 chia ết cho 13 nên 39b chia hết cho 13
Vậy 10a + b chia hết cho 13 (đpcm)
Vì a + 4b chia hết cho 13 nên 10(a+4b) chia hết cho 13
10a+40b chia hết cho 13
(10a+b)+39b chia hết cho 13
Mà 39 chia hết cho 13 nên 39b chia hết cho 13
=> 10a+b chia hết cho 13
Vây: nếu a+4b chia hết cho 13 thì 10a+bchia hết cho 13
Giải : Đặt a + 4b = x ; 10a + b = y . Ta biết x \(⋮\)13 cần chứng minh y \(⋮\)13
• Xét biểu thức :
10x - y = 10( a + 4b ) - ( 10a + b ) = 10a + 40b - 10a - b = 39b
Như vậy 10x - y \(⋮\)13
Vì x \(⋮\)13 nên 10x \(⋮\)13 . Suy ra y \(⋮\)13 .
Bài 1
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Bài 3
n 2 + 3n - 13 chia hết cho n + 3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={-1;1;-13;13}
=>n thuộc{-4;-2;-16;10}
n 2 + 3 chia hết cho n - 1
ta có: n-1 chia hết cho n-1
=>(n-1)(n+1) chia hết cho n-1
=>n^2+n-n-1 chia hết cho n-1
=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1
=>(n^2+3)-(n^2-1) chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}
=> n thuộc {0;2;-1;3;-3
\(A+B=x^2y+xy^2\)
\(=xy.\left(x+y\right)\)
\(=13xy⋮13\)( theo bài ra )
\(\Rightarrow\)\(đpcm\)
\(A+B=x^2y+xy^2=xy\left(x+y\right)=13xy\)
\(\Rightarrow A+B\)chia hết cho 13