K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Đặt \(y=tx\left(t>0\right)\) thì ta có:

\(\left\{{}\begin{matrix}x\ge3tx\\A=\dfrac{4x^2+9t^2x^2}{tx^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t\le\dfrac{1}{3}\\A=\dfrac{4+9t^2}{t}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{4}{t}+9t=\left(\dfrac{1}{t}+9t\right)+\dfrac{3}{t}\ge6+9=15\)

Dấu = xảy ra khi \(t=\dfrac{1}{3}\) hay \(x=3y\)

21 tháng 3 2019

\(A=4.\frac{x}{y}+9.\frac{y}{x}\).Đặt \(\frac{x}{y}=t\left(t\ge3\right)\)

\(A=\left(t+\frac{9}{t}\right)+3t\ge2\sqrt{t.\frac{9}{t}}+3t=6+3t\ge6+3.3=15\) (Làm tắt tí nha)

Dấu "=" xảy ra khi t = 3.Tức là x = 3y

Vậy ...

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

1 tháng 1 2019

Áp dụng bđt Svác xơ, ta có:

\(A\ge\dfrac{\left(\sqrt{2x}+\sqrt{3y}+\sqrt{4z}\right)^2}{2\left(4x^2+9y^2+16z^2\right)}\)\(=\dfrac{2x+3y+4z+2\left(\sqrt{6xy}+\sqrt{12yz}+\sqrt{8xz}\right)}{2}\)\(\ge\dfrac{1+2\left(3\sqrt[3]{\sqrt{576x^2y^2z^2}}\right)}{2}\)(BĐT Cô-si)\(\ge\dfrac{1+6}{2}=\dfrac{7}{2}\)

Vậy Amin=\(\dfrac{7}{2}\Leftrightarrow\)\(\left\{{}\begin{matrix}\dfrac{2x}{9y^2+16z^2}=\dfrac{3y}{4x^2+16z^2}=\dfrac{4z}{4x^2+9y^2}\\\sqrt{6xy}=\sqrt{12yz}=\sqrt{8xz}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{3}{2}y=2z\)

1 tháng 1 2019

Viết lại bài toán: Cho \(a^2+b^2+c^2=1\). Tìm max \(\sum\dfrac{a}{b^2+c^2}\)

với a=2x, b=3y, c=4z.

Áp dụng BĐT AM-GM:

\(a\left(b^2+c^2\right)=\dfrac{1}{\sqrt{2}}\sqrt{2a^2\left(1-a^2\right)\left(1-a^2\right)}\le\dfrac{1}{\sqrt{2}}\sqrt{\dfrac{8}{27}}=\dfrac{2}{3\sqrt{3}}\)

Do đó \(VT\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Vậy \(A_{Min}=\dfrac{3\sqrt{3}}{2}\)

6 tháng 12 2023

Ta thấy 
72
=
2
3
.
3
2
72=2 
3
 .3 
2
  nên a, b có dạng 
{

=
2

3


=
2

.
3


a=2 
x
 3 
y
 
b=2 
z
 .3 
t
 

  với 

,

,

,


N
x,y,z,t∈N và 



{

,

}
=
3
;



{

,

}
=
2
max{x,z}=3;max{y,t}=2. 

 Theo đề bài, ta có 
2

.
3

+
2

.
3

=
42

x
 .3 
y
 +2 
z
 .3 
t
 =42

 

2


1
.
3


1
+
2


1
3


1
=
7
⇔2 
x−1
 .3 
y−1
 +2 
z−1
 3 
t−1
 =7   (*), do đó 

,

,

,


1
x,y,z,t≥1

 TH1: 



,



x≥z,y≤t. Khi đó 

=
3
,

=
2
x=3,t=2. (*) thành:

 
4.
3


1
+
3.
2


1
=
7
4.3 
y−1
 +3.2 
z−1
 =7 


=

=
1
⇔y=z=1

 Vậy 
{

=
24

=
18

a=24
b=18

  (nhận)

 TH2: KMTQ thì giả sử 



,



x≥z,y≥t. Khi đó 

=
3
,

=
2
x=3,z=2. (*) thành 

 
4.
3


1
+
2.
3


1
=
7
4.3 
y−1
 +2.3 
t−1
 =7, điều này là vô lí.

 Vậy 
(

,

)
=
(
24
,
18
)
(a,b)=(24,18) hay 
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.

17 tháng 5 2020

Vì x,y là số thực dương nên theo BĐT Cosi ta có:

\(x+y\ge2\sqrt{xy}\) Dấu "=" xảy ra <=> x=y hay x+x+x2=15 => x=y=3

GT: x+y+xy=15 => xy=15-(x+y)

Do đó: \(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-30+2\left(x+y\right)\ge\left(2\sqrt{xy}\right)^2-30+2\cdot2\sqrt{xy}\)

Dấu "=" xảy ra <=> x=y=3

Vậy \(min_P=4\cdot3^2-30+4\cdot3=18\Leftrightarrow x=y=3\)

11 tháng 6 2016

\(x+y+xy+1=16\Rightarrow\left(x+1\right).\left(y+1\right)=16.\)

Với mọi a,b lớn hơn 0 ta luôn có : \(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

Áp dụng với a = x +1  , b = y +1 Ta có : \(\frac{\left(x+y+2\right)^2}{4}\ge\left(x+1\right).\left(y+1\right)=16\) 

                                                             => \(\left(x+y+2\right)^2\ge64\)

                                                             => \(x+y+2\ge\sqrt{64}=8\Rightarrow x+y\ge6\)( do x, y > 0)

Ta có : \(\left(x+y+2\right)^2\ge64\Rightarrow x^2+y^2+4+2xy+4x+4y\ge64\)

=> \(P\ge64-4-2\left(x+y+xy\right)+2\left(x+y\right)\ge18\)

Vậy Pmin = 18 khi x = y = 3 .

12 tháng 6 2016

đoạn cuối mình đánh nhầm dấu " - " thành dấu " + "

\(P\ge64-4-2\left(x+y+xy\right)-2\left(x+y\right)=18..\)