Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)
Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)
\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=3\)
Vậy Min(H) = 1/2 khi x = y = z = 3
\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)
\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)
\(P_{min}=4\) khi \(x=y=1\)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
\(A=4.\frac{x}{y}+9.\frac{y}{x}\).Đặt \(\frac{x}{y}=t\left(t\ge3\right)\)
\(A=\left(t+\frac{9}{t}\right)+3t\ge2\sqrt{t.\frac{9}{t}}+3t=6+3t\ge6+3.3=15\) (Làm tắt tí nha)
Dấu "=" xảy ra khi t = 3.Tức là x = 3y
Vậy ...