Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để x là căn bậc hai số học của số a không âm là x ≥ a và x2 = a.
Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 22 = 4.
Để x là căn bậc hai số học của số a không âm là x ≥ a và x 2 = a .
Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 2 2 = 4 .
a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne2\end{cases}}\)
\(P=\left(1-\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\right).\left(1+\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\right)\)
\(=\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)=1-x\)
b. \(P\ge0\Rightarrow1-x\ge0\Rightarrow x\le1\)
Vậy với \(x\le1\)thì P có giá trị không âm
Cho pt x^2 -2(m-1).x-4m = 0 a) tìm m để pt có 2 nghiệm dương b) tìn m để pt có 2 nghiệm âm phân biệt
∆' = m² - 2m + 1 + 4m
= m² + 2m + 1
= (m + 1)² ≥ 0 với mọi m
a) Để phương trình có hai nghiệm dương thì:
S = x₁ + x₂ = 2(m - 1) > 0
P = x₁.x₂ = -4m > 0
*) 2(m - 1) > 0
m - 1 > 0
m > 1 (1)
*) -4m > 0
m < 0 (2)
Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.
b) Để phương trình có hai nghiệm âm phân biệt thì
∆ > 0; S < 0; P > 0
*) ∆ > 0
⇔ (m + 1)² > 0
⇔ m + 1 ≠ 0
⇔ m ≠ -1 (3)
*) S = 2(m - 1) < 0
⇔ m - 1 < 0
⇔ m < 1 (4)
*) P > 0
⇔ -4m < 0
⇔ m < 0 (5)
Từ (3), (4) và (5) ⇒ m < 1
Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt
\(x^2-2\left(m-1\right)x-4m=0\)
\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy m < 1 thì pt có 2 nghiệm âm phân biệt
áp dụng bđt cô si ta có:
\(\left(x+y\right)+4\ge4\sqrt{x+y};\left(y+z\right)+4\ge4\sqrt{y+z};\left(z+x\right)+4\ge4\sqrt{z+x}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)+12\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\)
\(\Rightarrow24\ge4\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)\Rightarrow6\ge\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
Câu 5: B
Câu 3:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne4\end{matrix}\right.\)
b: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{2\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}}\)
\(=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)
c: Để P>4 thì \(\sqrt{x}>4\)
=>x>16
Giúp mik vs mn ơi
a, x = \(\sqrt{x}\) (đk x > 0)
⇔ x2 = x ⇔ x2 - x = 0 ⇔ x(x-1)= 0 ⇔ x =0 (loại) hoặc x = 1
vậy x = 1
b, x > \(\sqrt{x}\) (đk X > 0)
⇔ x2 > x ⇔ x2 - x > 0 ⇔ x (x-1)> 0 ⇔ x >1
c. x < \(\sqrt{x}\) (đk x >0)
⇔ x2 < x ⇔ x(x-1)<0 ⇔ 0<x<1