Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BC sử dụng py ta go : => BC = 29
b, AD là p/g => BD/DC = AB / AC = 20/21
=> BD /20 = DC/21 = BD+DC / 20 + 21 = 29/41
=> BD = 29/41 . 20 = 580/41
=> DC = 29/41 . 21 = 609/41
b, AB// DF
AB vg AC
=> DF vuông góc với AC
DE // AC
AB vg AC
=> DE vg AB
tg AFDE có ba giocs vuông => AFDE là HCN
Sử dụng ta let thì phải
Xét tam giác ABC \(\perp\)tại A
Áp dụng định lí pi-ta-go ta có :
BC2 = AB2 + AC2
BC2 = 152 + 202
BC2 = 625
BC = 25
Do AD là đường phân giác \(\widehat{A}\)
=) \(\frac{B\text{D}}{C\text{D}}\)= \(\frac{AB}{AC}\)
=) \(\frac{B\text{D}}{BC-B\text{D}}\)= \(\frac{15}{20}\)
=) \(\frac{B\text{D}}{25-B\text{D}}\)= \(\frac{15}{20}\)
=) 20.BD = 15.( 25 - BD )
20.BD = 375 - 15.BD
20.BD + 15.BD = 375
35. BD = 375
BD \(\approx\)10,7
=) CD \(\approx\)24,3
a) Tứ giác AEDF là hình bình hành.
Vì có DE // AF, DF // AE (gt) (theo định nghĩa)
b) Hình bình hành AEDF là hình thoi khi AD là tia phân giác của góc A. Vậy nếu D là giao điểm của tia phân giác góc A với cạnh BC thì AEDF là hình thoi.
c) Nếu ΔABC vuông tại A thì AEDF là hình chữ nhật (vì là hình bình hành có một góc vuông).
Nếu ABC vuông tại A và D là giao điểm của tia phân giác của góc A với cạnh BC thì AEDF là hình vuông (vì vừa là hình chữ nhật, vừa là hình thoi).
a: \(BC=\sqrt{20^2+21^2}=29\left(cm\right)\)
b: AD là phân giác
=>BD/AB=CD/AC
=>BD/20=CD/21=29/41
=>BD=580/41cm; CD=609/41cm
c: Xet tứ giác AEDF có
AE//DF
DE//FA
góc FAE=90 độ
AD là phan giác của góc FAE
=>AEDF là hình vuông