Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\overrightarrow{IJ}=\overrightarrow{IA}+\overrightarrow{AB}+\overrightarrow{BJ}\\\overrightarrow{IJ}=\overrightarrow{ID}+\overrightarrow{DC}+\overrightarrow{CJ}\end{matrix}\right.\)
Cộng vế với vế:
\(2\overrightarrow{IJ}=\left(\overrightarrow{IA}+\overrightarrow{ID}\right)+\left(\overrightarrow{BJ}+\overrightarrow{CJ}\right)+\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DC}\)
\(\Rightarrow\overrightarrow{IJ}=\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{DC}\)
b/ Đặt \(\frac{MA}{MB}=\frac{ND}{NC}=k\)
\(\left\{{}\begin{matrix}\overrightarrow{IP}=\overrightarrow{IA}+\overrightarrow{AM}+\overrightarrow{MP}\\\overrightarrow{IP}=\overrightarrow{ID}+\overrightarrow{DN}+\overrightarrow{NP}\end{matrix}\right.\)
\(\Rightarrow2\overrightarrow{IP}=\left(\overrightarrow{IA}+\overrightarrow{ID}\right)+\left(\overrightarrow{MP}+\overrightarrow{NP}\right)+\overrightarrow{AM}+\overrightarrow{DN}=\overrightarrow{AM}+\overrightarrow{DN}\)
\(\Rightarrow2\overrightarrow{IP}=k.\overrightarrow{AB}+k.\overrightarrow{DC}\)
\(\Rightarrow\overrightarrow{IP}=\frac{k}{2}\left(\overrightarrow{AB}+\overrightarrow{DC}\right)=\frac{k}{2}.\overrightarrow{IJ}\Rightarrow P;I;J\) thẳng hàng hay P thuộc IJ
Gọi E, F lần lượt là trung điểm AC và BD
Đặt \(\frac{AM}{AD}=\frac{CN}{CB}=k\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=k.\overrightarrow{AD}\\\overrightarrow{CN}=k.\overrightarrow{CB}\end{matrix}\right.\) với k là hằng số
\(\overrightarrow{EI}=\overrightarrow{EC}+\overrightarrow{CN}+\overrightarrow{NF}=\frac{1}{2}\overrightarrow{AC}+\overrightarrow{CN}+\frac{1}{2}\overrightarrow{NM}\)
\(=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{DC}\right)+\overrightarrow{CN}+\frac{1}{2}\left(\overrightarrow{NC}+\overrightarrow{CD}+\overrightarrow{DM}\right)\)
\(=\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC}+\overrightarrow{CN}+\frac{1}{2}\overrightarrow{NC}+\frac{1}{2}\overrightarrow{CD}+\frac{1}{2}\overrightarrow{DM}\)
\(=\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{CN}+\frac{1}{2}\overrightarrow{DM}=\frac{1}{2}\overrightarrow{AM}+\frac{1}{2}\overrightarrow{CN}=\frac{k}{2}\left(\overrightarrow{AD}+\overrightarrow{CB}\right)\)
\(\overrightarrow{EF}=\overrightarrow{EC}+\overrightarrow{CB}+\overrightarrow{BF}=\frac{1}{2}\overrightarrow{AC}+\overrightarrow{CB}+\frac{1}{2}\overrightarrow{BD}\)
\(=\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{DC}+\overrightarrow{CB}+\frac{1}{2}\overrightarrow{BC}+\frac{1}{2}\overrightarrow{CD}\)
\(=\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{CB}=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{CB}\right)\)
\(\Rightarrow\overrightarrow{EF}=k.\overrightarrow{EI}\Rightarrow E;F;I\) thẳng hàng hay I luôn thuộc đường thẳng EF cố định