K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

Giải bài 6 trang 92 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 10 2023

a: Gọi giao điểm của AG với BC là E

Xét ΔABD có

G là trọng tâm

E là giao điểm của AG với BD

Do đó: E là trung điểm của BD và AG=2/3AE

Xét ΔAHD có \(\dfrac{AG}{AE}=\dfrac{AM}{AD}=\dfrac{2}{3}\)

nên GM//ED

=>GM//BD

mà BD\(\subset\left(BCD\right)\) và GM không thuộc mp(BCD)

nên GM//(BCD)

b: Gọi giao của AH với BC là F

Xét ΔABC có

H là trọng tâm

F là giao điểm của AH với BC

Do đó: F là trung điểm của BC và AH=2/3AF

Xét ΔAGE có \(\dfrac{AH}{AF}=\dfrac{AG}{AE}=\dfrac{2}{3}\)

nên HG//FE

mà \(FE\subset\left(BCD\right)\);HG không thuộc(BCD)

nên HG//(BCD)

31 tháng 10 2023

Vẽ hình minh họa dc kh ạ

 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Xét tam giác ABD có

M, N tương ứng là trung điểm của AB, AD

\( \Rightarrow \) MN là đường trung bình của tam giác ABD 

\( \Rightarrow \)  MN // BD mà BD \( \bot \) BC (\(\widehat {CBD} = {90^0}\))

\( \Rightarrow \) MN \( \bot \) BC.

b) Vì G, K tương ứng là trọng tâm của các tam giác ABC, ACD nên \(\frac{{CG}}{{CM}} = \frac{{CK}}{{CN}} = \frac{2}{3}\)

\( \Rightarrow \) GK // MN (Định lý Talet) mà MN \( \bot \) BC

\( \Rightarrow \) GK \( \bot \) BC.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a) Ta có ABC.A'B'C' là hình lăng trụ nên \(\Delta ABC = \Delta A'B'C'\) suy ra AG = A'G'.

Lại có (ABC) // (A'B'C'), giao tuyến của mp(AGG'A') với (ABC) và (A'B'C')  lần lượt là AG, A'G' suy ra AG // A'G'.

Như vậy , tứ giác AGG'A' có AG = A'G', AG // A'G' là hình bình hành.

b) AGG'A' là hình bình hành suy ta AA' // GG'.

Lại có AA' // CC' (do ABC.A'B'C' là hình lăng trụ).

Mặt phẳng (AGC) // (A'G'C') suy ra AGC.A'G'C' là hình lăng trụ.