Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Không mất tổng quát giả sử $a\leq b\leq c$
Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ là số lẻ. Mà $5070$ chẵn nên vô lý.
Do đó trong 3 số $a,b,c$ tồn tại ít nhất 1 số chẵn.
Số nguyên tố chẵn luôn là số bé nhất (2) nên $a=2$
Khi đó: $b^2+c^2=5070-a^2=5066\geq 2b^2$
$\Rightarrow b^2\leq 2533$
$\Rightarrow b< 51$
$\Rightarrow b\in \left\{2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47\right\}$
Thử các TH này ta thấy $(b,c)=(5,71), (29,65)$
Vậy $(a,b,c)=(2,5,71), (2,29,65)$ và các hoán vị.
vì 5070 là số chẵn ⇒ một trong 3 số a,b,c chẵn hoặc cả 3 số a,b,c chẵn
+) cả 3 số a,b,c chẵn
=> a=2, b=2, c=2 ( vì a,b,c là các số nguyên tố )
khi đó: a2+b2+c2= 12(loại)
=> một trong 3 số a,b,c chẵn
vì giá trị các số bằng nhau, giả sử a chẵn => a=2
khi đó: a2+b2+c2= 4+b2+c2
=> b2+c2= 5066
vì số chính phương có tận cùng là 0, 1, 4, 5, 6, 9 mà b2 và c2 là số chính phương có tận cùng là 0, 1, 4, 5, 6, 9
=> b2 và c2 có tận cùng là 0, 1, 4, 5, 6, 9
Mà b và c lẻ
=> b2 và c2 có tận cùng là 1, 5, 9
mà 5066 có tận cùng là 6
=> b2 và c2 có tận cùng là 1, 5
=> b và c có tận cùng là 1, 5
giả sử b có tận cùng là 5=> b=5
khi đó: 25+ c2 = 5066
c2 = 5041=712
=> c = 71
vậy, a=2, b=5, c=71 và các hoán vị của nó
a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bca
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Nếu a;b;c cùng lẻ \(\Rightarrow a^2+b^2+c^2\) lẻ, mà 1386 chẵn nên ko thỏa mãn
\(\Rightarrow\) Trong 3 số a;b;c phải có ít nhất 1 số chẵn, không mất tính tổng quát, giả sử c chẵn. Mà c là số nguyên tố \(\Rightarrow c=2\)
\(\Rightarrow a^2+b^2+4=1398\Rightarrow a^2+b^2=1394\)
Mặt khác một số chính phương chia 5 chỉ có các số dư 0,1,4
Mà \(1394\) chia 5 dư 4 \(\Rightarrow a^2+b^2\) chia 5 dư 4
\(\Rightarrow\) Trong 2 số \(a^2\) và \(b^2\) một số chia 5 dư 0, một số chia 5 dư 4
Hay trong 2 số a và b phải có 1 số chia hết cho 5
Giả sử b chia hết cho 5 \(\Rightarrow b=5\)
\(\Rightarrow a^2+25=1394\Rightarrow a=37\)
Vậy \(\left(a;b;c\right)=\left(37;5;2\right);\left(37;2;5\right);\left(2;5;37\right);\left(2;37;5\right);\left(5;2;37\right);\left(5;37;2\right)\)
a, a(b+c)−b(a−c)a(b+c)−b(a−c)
=ab+ac−(ab−bc)=ab+ac−(ab−bc)
=ab+ac−ab+bc=ab+ac−ab+bc
=ac+bc=ac+bc
=(a+b)c=(a+b)c
b,(a+b)(a−b)(a+b)(a−b)
=(aa+ab)−(ab+bb)=(aa+ab)−(ab+bb)
=aa+ab−ab−bb
4. a. A = -a + b - c + a + b + c = 2b
b. Thay b = -1 vào A => A = 2.(-1) = -2
5. a. = (1-2) + (3-4) + (5-6) + ... + (99-100) (có tất cả 50 cặp)
= -1 + (-1) + ... + (-1)
= -1.50
= -50
b. = (4-2) + (8-6) + ... + (2016 - 2014) ( có tất cả 504 cặp )
= 2 + 2 + ... + 2
= 2.504
= 1008
4) a) A=(-a+b-c)-(-a-b-c)=-a+b-c+a+b+c=(-a+a)+(b+b)+(-c+c)=0+2b+0=2b
5)a) -50
b) 1008
ta là dương Minh Đức lớp 6a5 trường htk at cần thơ
=1 bạn nhân cái đã cho với a+b+c ,sau đó tách thôi,,,VD a(a+b+c)/(b+c)=a+1 ( tách ra nha) tương tự vs mấy cái kai