Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quy luật là: Số đằng sau hơn số đằng trước 1111 đơn vị
Ví dụ: 1234 + 1111 = 2354
2354 + 1111 = 3465
3465 + 1111 = 4576
Số số hạng dãy trên có là:
( 6798 - 1243 ) : 1111 + 1 = 6 (số)
Tổng của dãy trên là:
( 6798 + 1243 ) x 6 : 2 = 24123
C1: Chứng minh DH=AD=1/2AB
HE=AE=1/2AC
tam giác ADE=DHE => DHE=90 độ
C2. Chứng minh Tam giác DHE đồng dạng BAC (c.c.c)
=> DHE=BAC=90 độ
\(!x+\frac{1}{x}!\ge2\Rightarrow!a!\ge2\\ \)
Với IaI>=2
ta có: \(\left(x+\frac{1}{x}\right)^2=a^2\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
giải giúp mình bài nay bằng máy tính casio hộ mình nha(nhớ giải chi tiết hộ mình)
tính: \(1023456^3\)
Ta có
\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)
Lấy dưới trừ trên vế theo vế ta được
(x + y)2 - 2(x + y) = 215
\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)
Ta lại có
Ta lại có
x3 - y3 = (x - y)(x2 + xy + y2) =
\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)
Giờ chỉ việc thế số vô là có đáp án nhé
Lương Tịch bn tham khảo nha
I > Phương pháp dự đoán và quy nạp :
Trong một số trường hợp khi gặp bài toán tính tổng hữu hạn
Sn = a1 + a2 + .... an (1)
Bằng cách nào đó ta biết được kết quả (dự đoán , hoặc bài toán chứng minh khi đã cho biết kết quả). Thì ta nên sử dụng phương pháp này và hầu như thế nào cũng chứng minh được .
Ví dụ 1 : Tính tổng Sn =1+3+5 +... + (2n -1 )
Thử trực tiếp ta thấy : S1 = 1
S2 = 1 + 3 =22
S3 = 1+ 3+ 5 = 9 = 32
... ... ...
Ta dự đoán Sn = n2
Với n = 1;2;3 ta thấy kết quả đúng
giả sử với n= k ( k 1) ta có Sk = k 2 (2)
ta cần phải chứng minh Sk + 1 = ( k +1 ) 2 ( 3)
Thật vậy cộng 2 vế của ( 2) với 2k +1 ta có
1+3+5 +... + (2k – 1) + ( 2k +1) = k2 + (2k +1)
vì k2 + ( 2k +1) = ( k +1) 2 nên ta có (3) tức là Sk+1 = ( k +1) 2
theo nguyên lý quy nạp bài toán được chứng minh
vậy Sn = 1+3=5 + ... + ( 2n -1) = n2
Tương tự ta có thể chứng minh các kết quả sau đây bằng phương pháp quy nạp toán học .
1, 1 + 2+3 + .... + n =
2, 12 + 2 2 + ..... + n 2 =
3, 13+23 + ..... + n3 =
4, 15 + 25 + .... + n5 = .n2 (n + 1) 2 ( 2n2 + 2n – 1 )