Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy x = 1
b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)
\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)
\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)
=> Phương trình vô nghiệm
`9/[x^2-4]=[x-1]/[x+2]+3/[x-2]` `ĐK: x \ne +-2`
`<=>9/[(x-2)(x+2)]=[(x-1)(x-2)+3(x+2)]/[(x-2)(x+2)]`
`=>9=x^2-2x-x+2+3x+6`
`<=>x^2=1`
`<=>x=+-1` (t/m)
Vậy `x=+-1`
\(\dfrac{9}{x^2-4}=\dfrac{x-1}{x+2}+\dfrac{3}{x-2}\left(đkxđ:x\ne\pm2\right)\\ \Leftrightarrow\dfrac{9}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\\ \Rightarrow9=x^2-3x+2+3x+6\\ \Leftrightarrow x^2=1\\ \Leftrightarrow x^2=\pm1\left(TM\right)\)
Vậy PT có tập nghiệm \(S=\left\{-1;1\right\}\)
a) ta có : \(x^3-64=x^3-4^3=\left(x-4\right)\left(x^2+4x+16\right)\)
b) ta có : \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)
c) ta có : \(125\left(x+1\right)^3-1=\left(5x+5\right)^3-1\)
\(=\left(5x+5-1\right)\left(\left(5x+5\right)^2+\left(5x+5\right)+1\right)\)
\(=\left(5x+4\right)\left(25x^2+55x+31\right)\)
d) ta có : \(2x\left(x+1\right)+2\left(x+1\right)=\left(2x+2\right)\left(x+1\right)=2\left(x+1\right)\left(x+1\right)\)
Đặt \(x^2+x+1=t\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12=t\left(t+1\right)-12=t^2+t-12=\left(t^2+t+\dfrac{1}{4}\right)-\dfrac{49}{4}=\left(t+\dfrac{1}{2}\right)^2-\left(\dfrac{7}{2}\right)^2=\left(t+\dfrac{1}{2}-\dfrac{7}{2}\right)\left(t+\dfrac{1}{2}+\dfrac{7}{2}\right)=\left(t-3\right)\left(t+4\right)=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
= \(\left(x^2+x+1\right)\left[\left(x^2+x+1\right)+1\right]-12\)
= \(\left(x^2+x+1\right)^2\left(x^2+x+1\right)-12\)
= \(\left(x^2+x+1\right)\left(x^2+x+1\right)-3\left(x^2+x+1\right)+4\left(x^2+x+1\right)-4.3\)
= \(\left(x^2+x+1\right)\left(x^2+x-2\right)+4\left(x^2+x-2\right)\)
= \(\left(x^2+x+5\right)\left(x^2+x-2\right)\)
a)
\(P=4^3+\left(2-4x\right).\left(x^2-3x+1\right)=64+2x^2-6x+2-4x^3+12x^2-4x.\)
\(=-4x^3+14x^2-10x+66\)
b)
Gía trị của P khi x=1 chính là tổng các hệ số của P và bằng
\(P=-4+14-10+66=66\)
2(x^2+x+1)/(x^2+1)
=2x^2+2x+2/x^2+1
=x^2+1/x^2+1+(x+1)^2/x^2+1
=1+(x+1)^2/(x^2+1)
ta có (x+1)2/(x^2+1) luôn lớn hơn hoặc bằng 0 do hai cái đều lớn hơn 0
suy ra GTNN của (x+1)^2/(x^2+1)=0 tại x=-1
vậy GTNN của B=1 tại x=-1
\(!x+\frac{1}{x}!\ge2\Rightarrow!a!\ge2\\ \)
Với IaI>=2
ta có: \(\left(x+\frac{1}{x}\right)^2=a^2\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)