Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.
Cách giải: Gọi số đó là a b c d e
- TH1: a = 1
+ b có 7 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 7.6.5.4 = 840 số
- TH2: b = 1
+ a ≠ b , a ≠ 0 , nên có 6 cách chọn.
+ c có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có: 6.6.5.4 = 720 số.
- TH3: c = 1.
+ a ≠ c , a ≠ 0 , nên có 6 cách chọn.
+ b có 6 cách chọn.
+ d có 5 cách chọn.
+ e có 4 cách chọn.
Nên có 6.6.5.4 = 720 số.
Vậy có tất cả 840 + 720 + 720 = 2280 số.
Số số thỏa mãn: \(\dfrac{9!}{5!}=3024\) số
(Đây là loại hoán vị lặp)
Gọi \(M=\overline{abc} (a \ne b \ne c) \)
TH1: \(c=0 → c\) có 1 cách chọn.
\(a\) có 5 cách chọn.
\(b\) có 4 cách chọn.
\(\Rightarrow\) Có: \(1.5.4=20\) cách.
TH2: \(c \ne 0→ c\) có \(2\) cách chọn.
\(a\) có \(4\) cách chọn.
\(b\) có \(4\) cách chọn.
\(Rightarrow\) Có : \(2.4.4=32\) cách.
\(Rightarrow\) Có tất cả : \(20+32=52\) cách.
Vậy có thể lập được 52 số thỏa mãn yêu cầu.
Đáp án B
Gọi số đó là a b c d e
TH1: a = 1
b:7 cách; c:6 cách; d:5 cách; e:4 cách => Có 7.6.5.4 = 840 số.
TH2: b = 1
a: 6 cách; c:6 cách; d:5 cách; e:4 cách => Có 6.6.5.4 = 720 số.
TH3: c = 1
a: 6 cách; b:6 cách; d:5 cách; e:4 cách => Có 6.6.5.4 = 720 số.
Vậy có 840 +720 +720 = 2280 số.
Lời giải:
a. Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 là:
$5.A^4_6=1800$ (số)
b.
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 mà không có 7 là:
$5.A^4_5=600$ (số)
Số số tự nhiên gồm 5 chữ số khác nhau luôn có mặt 1 và 7 là:
$1800-600=1200$ (số)
1.
Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)
Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách
Tổng cộng: \(4.A_6^4\) cách
2.
Gọi chữ số cần lập có dạng \(\overline{abcd}\)
a.
Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách
Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách
\(\Rightarrow A_6^4-A_5^3=300\) số
b.
Để số được lập là số chẵn \(\Rightarrow\) d chẵn
TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn
TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)
a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn
\(\Rightarrow2.4.4.3=96\) số
Tổng cộng: \(A_5^3+96=156\) số
Xác suất \(P=\dfrac{156}{300}=...\)
Chọn 3 chữ số từ 7 chữ số: \(C_7^3=35\) cách
Có 2 cách lập: (1 số xuất hiện 3 lần, 2 số xuất hiện 1 lần) hoặc (1 số xuất hiện 1 lần, 2 số xuất hiện 2 lần)
Số cách lập: \(3.\dfrac{5!}{3!}+3.\dfrac{5!}{2!.2!}=150\)
Số số tạo ra: \(35.150=5250\) số