Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> \(\widehat{C}=180-90-15=70^o\)
Ta có:
\(sin15=\dfrac{AC}{BC}\Rightarrow BC=\dfrac{AC}{sin15}=\dfrac{4AC}{\sqrt{6}-\sqrt{2}}\)
\(sin75=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{sin75}=\dfrac{4AB}{\sqrt{6}+\sqrt{2}}\)
\(\Rightarrow BC^2=\dfrac{16.AB.AC}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}=4.AB.AC\)
cho tam giác abc vuông tại a. trung tuyến am, đường cao ah. biết góc abc = 15 độ. cmr: bc^2 = 4ab.ac
A đối xứng D qua BC
=>BA=BD và CA=CD
Xét ΔCAB và ΔCDB có
CA=CD
BA=BD
CB chung
=>ΔCAB=ΔCDB
=>góc CDB=90 độ
góc CAB+góc CDB=180 độ
=>CABD nội tiếp
A đối xứng D qua BC
=>BA=BD và CA=CD
Xét ΔCAB và ΔCDB có
CA=CD
BA=BD
CB chung
=>ΔCAB=ΔCDB
=>góc CDB=góc CAB=90 độ
góc BAC+góc BDC=180 độ
=>BACD nội tiếp
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
- Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
- =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
- Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)+ \(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)= \(\frac{1}{5^2}\)+ \(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC