K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

P Q R M N

Ta có: $PQ=PM+MQ$\(\Rightarrow PM=PQ-MQ=8-6=2\left(cm\right)\)

Áp dụng định lý Thales trong tam giác PQR, có:

\(\frac{PM}{PQ}=\frac{PN}{PR}\Leftrightarrow PR=\frac{PN.PQ}{PM}=\frac{3.8}{2}=12\left(cm\right)\)

KL: .........................

11 tháng 12 2023

Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR

a: ta có: ΔPQR vuông tại P

=>\(QR^2=PQ^2+PR^2\)

=>\(QR^2=8^2+6^2=100\)

=>\(QR=\sqrt{100}=10\left(cm\right)\)

Ta có: ΔRPQ vuông tại P

mà PM là đường trung tuyến

nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)

b: Xét tứ giác PNMK có

\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)

=>PNMK là hình chữ nhật

c: Xét ΔRPQ có

M là trung điểm của RQ

MK//RP

Do đó: K là trung điểm của PQ

=>PK=KQ(1)

Ta có: PKMN là hình chữ nhật

=>PK=MN(2)

Từ (1) và (2) suy ra KQ=MN

Ta có: PK//MN
K\(\in\)PQ

Do đó: NM//KQ

Xét tứ giác KQMN có

KQ//MN

KQ=MN

Do đó: KQMN là hình bình hành

=>QN cắt MK tại trung điểm của mỗi đường

mà O là trung điểm của MK

nên O là trung điểm của QN

=>OQ=ON

Xét tứ giác PMQH có

K là trung điểm chung của PQ và MN

=>PMQH là hình bình hành

Hình bình hành PMQH có PQ\(\perp\)MH

nên PMQH là hình thoi

6 tháng 10 2017

Hình tự vẽ nha!

Vì PQ=PR suy ra tg PQR cân tại P

suy ra : góc PQR=\(\frac{180-P}{2}\)(180 độ, góc P)(1)

Ta có PQ=PR và PM=PN(gt)

vì PM=PN suy ra tg PMN cân tại P

suy ra : góc PMN=\(\frac{180-P}{2}\)(2)

Từ (1),(2) ta có :góc  PQR= góc PMN

mà 2 góc ở vị trí đồng vị suy ra MN // QR

suy ra QMNR là hình thang (3)

Vì PQ=PR và PM=PN 

suy ra PQ-PM = PR-PN

suy ra MQ=NR(4)

TỪ (3) (4) suy ra QMNR là hình thang cân.

17 tháng 8 2016

Vì PQ là phân giác góc P trong ΔMNP

=> \(\frac{PM}{PN}\)\(\frac{QM}{QN}\)

<=> \(\frac{6}{8}\)\(\frac{QM}{QN}\)

<=> \(\frac{QN}{8}\)\(\frac{QM}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{QN}{8}\)\(\frac{QM}{6}\)\(\frac{QN+QM}{6+8}\)\(\frac{MN}{14}\)\(\frac{10}{14}\)\(\frac{5}{7}\)

=> QM = \(\frac{5}{7}\) . 6 = \(\frac{30}{7}\) (cm)

15 tháng 8 2016

  Gọi O là giao điểm hai đường chéo, MQ cắt AC ở H và MN cắt BD ở I. Ta có H và I là trung điểm OA và OB ta có:
Dien h AOM = BOM = ½ AOB
Dien h OHM = HAM = ½ AOM
Dien h OMI = BMI = ½ OMB
=> Dien h OHMI = ½ OAB
Tuong tu các cặp tam giác khác rồi cộng lại