Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: MK\(\perp\)PQ; MN\(\perp\)PR
a: ta có: ΔPQR vuông tại P
=>\(QR^2=PQ^2+PR^2\)
=>\(QR^2=8^2+6^2=100\)
=>\(QR=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔRPQ vuông tại P
mà PM là đường trung tuyến
nên \(PM=\dfrac{RQ}{2}=5\left(cm\right)\)
b: Xét tứ giác PNMK có
\(\widehat{PNM}=\widehat{PKM}=\widehat{NPK}=90^0\)
=>PNMK là hình chữ nhật
c: Xét ΔRPQ có
M là trung điểm của RQ
MK//RP
Do đó: K là trung điểm của PQ
=>PK=KQ(1)
Ta có: PKMN là hình chữ nhật
=>PK=MN(2)
Từ (1) và (2) suy ra KQ=MN
Ta có: PK//MN
K\(\in\)PQ
Do đó: NM//KQ
Xét tứ giác KQMN có
KQ//MN
KQ=MN
Do đó: KQMN là hình bình hành
=>QN cắt MK tại trung điểm của mỗi đường
mà O là trung điểm của MK
nên O là trung điểm của QN
=>OQ=ON
Xét tứ giác PMQH có
K là trung điểm chung của PQ và MN
=>PMQH là hình bình hành
Hình bình hành PMQH có PQ\(\perp\)MH
nên PMQH là hình thoi
a: Xét ΔPQR có
E là trung điểm của PQ
F là trung điểm của PR
DO đó: EF là đường trung bình
=>EF//QR và EF=QR/2
=>EF//QG và EF=QG
Xét tứ giác QEFR có EF//QR
nên QEFR là hình thang
b: EF=QR/2=16/2=8(cm)
c: Xét tứ giác EFGQ có
EF//GQ
EF=GQ
Do đó: EFGQ là hình bình hành
Hình tự vẽ nha!
Vì PQ=PR suy ra tg PQR cân tại P
suy ra : góc PQR=\(\frac{180-P}{2}\)(180 độ, góc P)(1)
Ta có PQ=PR và PM=PN(gt)
vì PM=PN suy ra tg PMN cân tại P
suy ra : góc PMN=\(\frac{180-P}{2}\)(2)
Từ (1),(2) ta có :góc PQR= góc PMN
mà 2 góc ở vị trí đồng vị suy ra MN // QR
suy ra QMNR là hình thang (3)
Vì PQ=PR và PM=PN
suy ra PQ-PM = PR-PN
suy ra MQ=NR(4)
TỪ (3) (4) suy ra QMNR là hình thang cân.
a: EK^2=EF^2+FK^2
=>ΔEFK vuông tại F
b: PQ^2<>QR^2+PR^2
=>ΔPRQ ko vuông
c: EF^2=DE^2+DF^2
=>ΔDEF vuông tại D
a/Vì M là trung điểm của PQ và N là trung điểm của QR nên MN là đường trung bình của tam giác PQR
b/Vì MN là đường trung bình của tam giác PQR nên\(MN=\frac{1}{2}PR\)
Mà PR=12cm nên suy ra MN=6cm
c/ Vì MN là đường trung bình của tam giác PQR nên MN//PR
Suy ra tứ giác MNPR là hình thang, mà \(\widehat{MPR}=90\)(do tam giác PQR vuông tại P)
Vậy MNPR là hình thang vuông
Ta có: $PQ=PM+MQ$\(\Rightarrow PM=PQ-MQ=8-6=2\left(cm\right)\)
Áp dụng định lý Thales trong tam giác PQR, có:
\(\frac{PM}{PQ}=\frac{PN}{PR}\Leftrightarrow PR=\frac{PN.PQ}{PM}=\frac{3.8}{2}=12\left(cm\right)\)
KL: .........................