K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2018

B A C D E

a) ta có  EAB=\(90^0+BAC\)

              DAC=\(90^0+BAC\)

=>    EAB=DAC

XÉT     \(\Delta EAB\)VÀ \(\Delta CAD\)

             AE=AC

             AD=AB

             EAB=DAC 

\(\Rightarrow\Delta EAB=\Delta CAD\left(c-g-c\right)\)

\(\Rightarrow BE=DC\)(CẠNH TƯƠNG ỨNG)

27 tháng 3 2020

BE=CD {cạnh tương ứng}

17 tháng 3 2016

a. xét tam giác ABE và tam giác ACD co:AB=AD; góc BAE=gocDAC; AE=AC suy ra tam giác ABE=tam giác ADC(c.g.c);suy ra: BE=DC;gocABE=góc ACD. đặt giao điểm của DC và AB làO;BE và DC là K ta có:

góc ADO+góc DOA+góc OAM=180

góc OBK+gócBOK+gócOKB=180

mà: góc ADO=góc OBA;DOA=BOK suy ra:OAM=OKB;MÀ OAM=90=>OKB=90=>BEvuông góc với DC

4 tháng 6 2015

BẠN TỰ VẼ HÌNH NHA

A)TG DAB VUÔNG CÂN TAI SUY RA DA=AB VÀ DAB=90 ĐỘ

TG EAC VUÔNG TẠI A SUY RA AE=AC VÀ EAC=90 ĐỘ

TA CÓ DAC+BAC=90+BAC=DAC

VÀ EAC+BAC=90+BAC=BAE

TỪ 2 ĐIỀU TRÊN SUY RA DAC=BAE

TG DAC VÀ TG BAE CÓ 

DA=AB

DAC=BAE

AC=AE

SUY RA TG DAC=TG BAE (C G C) SUY RA DC=BE VÀ ADC=ABE

GỌI T LÀ GIAO ĐIỂM CỦA DC VÀ BE

TA CÓ ADC+CDB+DBA=90(TG DAB VUÔNG TẠI A)

         ABE+CDB+DBA=90

          DBT+CDB=90 SUYRA DTE=90 ĐỘ(DO DTE=DBT+CDB)

SUY RA DC VUÔNG GÓC VỚI BE TẢI T

4 tháng 6 2015

B)TA CÓ 

TG MNE=AND(C G C) SUY RA  ME=AD MÀ AD=AB(TG DAB VUÔNG CÂN TẠI A) SUY RA ME =AB

TG MNE=AND SUY RA GÓC MEN=ADN 

TA CÓ ADN+AED=90 (TG DAE VUÔNG TẠI A)

TỪ 2 DÒNG TRÊN SUY RA MEN+AED=90 NÊN MEA=90 ĐỘ 

CMĐ TG ABC=EMA(MDO ME=AB,MEA=BAC=90,EA=AC)(C G C) SUY RA GÓC MAE=BCA

C)GỌI I LÀ GIAO ĐIỂM CỦA MA VÀ BC

TA CÓ MAE+EAC+IAC=180 MÀ EAC=90 ĐỘ SUY RA MAE+IAC=90

MÀ MAE=BCA

TỪ 2 DÒNG TRÊN SUY RA BCA+IAC=90 

MÀ IAC+BCA=AIB(GÓC NGOÀI CỦA TG AIC VUÔNG TẠI I)

TỪ 2 ĐIỀU TRÊN SUY RA AIB=90 ĐỘ SUY RA MA VUÔNG GÓC VỚI BC TẠI I

CHỖ NÀO BN KO HIỂU THÌ CỨ HỎI MÌNH NHA

28 tháng 10 2023

A B C D E H I N M

a/

Ta có

\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC

\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)

Ta có

tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)

\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)

Xét tg vuông NDA và tg vuông BAH có

\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)

AD=AB (cạnh bên tg cân)

=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

=> DN = AH

C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH

b/

Ta có

\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM

Xét tg vuông DIN và tg vuông EIM có

DN=EM (cùng bằng AH)

\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)

=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> DI=IE

 

 

 

 

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn