K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

A B C M N P I H O

a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600

=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).

b) Tam giác BPM là tam giác đều (cmt) => PM=BP

Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)

=> BP=AN.

Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA

Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP 

=> Tam giác OAN= Tam giác OBP (đpcm)

c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP

Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)

HP=HN => H nằm trên trung trực của NP (2)

Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).

23 tháng 4 2018

Kurokawa Neko cho mk hỏi tc đoạn chắn là kí gì zậy

22 tháng 2 2018

hình như đề bài sai rồi

15 tháng 6 2018

a, Xét ∆ ABC đều

➡️Góc A = góc B = góc C = 60°

Vì MN // AB (gt)

➡️Góc ABC = góc NMC = 60°

Xét ∆ MNC có 2 góc bằng 60°

➡️∆ MNC đều

C/m tương tự ta sẽ có ∆ BMP đều

b, ✳️ Ta có: MN // AB

                MP // AC

➡️AN = MP (t/c cặp đoạn chắn)

mà MP = BP (∆ BMP đều)

➡️AN = BP

T/c cặp đoạn chắn: hai đoạn thẳng song song bị chắn bởi hai đoạn thẳng song song thì bằng nhau.

✳️ Vì ∆ ABC đều

➡️O là trọng tâm đồng thời là tâm đg tròn ngoại tiếp

➡️OA = OB

O cx đồng thời là tâm đg tròn nội tiếp

➡️AO là tia phân giác của góc BAC

➡️Góc BAO = góc OAN (1)

✳️ Xét ∆ ABO có OA = OB (cmt)

➡️∆ ABO cân tại O

➡️Góc ABO = góc BAO (2)

Từ (1) và (2) ➡️góc ABO = góc OAN

✳️ Xét ∆ AON và ∆ BOP có:

AN = BP (cmt)

Góc OAN = góc ABO (cmt)

OA = OB (cmt) 

➡️∆ AON = ∆ BOP (c.g.c)

c, Vì ∆ AON = ∆ BOP (cmt)

➡️ON = OP (2 cạnh t/ư)

➡️OI là đg trung trực của PN (đpcm)

Mk trình bày đầy đủ rồi đó bn chỉ cần viết vào vở thôi mk nha hok tốt~

15 tháng 6 2018

Cảm ơn bạn nhiều nha!!!

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

6 tháng 4 2018

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

\(\Rightarrow\Delta ABC=\Delta ADC\)   (Hai cạnh góc vuông)

\(\Rightarrow BC=DC\)

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

\(\widehat{BNK}=\widehat{CND}\)   (Đối đỉnh)

\(\widehat{KBN}=\widehat{DCN}\)   (So le trong)

\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)

\(\Rightarrow DN=KN\)

c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)  

Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)

Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.

17 tháng 8 2018

Bài giải : 

a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:

Cạnh AC chung

BA = DA

⇒ΔABC=ΔADC   (Hai cạnh góc vuông)

⇒BC=DC

Hay tam giác BCD cân tại C.

b) Xét tam giác BKN và tam giác CDN có:

BN = CN

^BNK=^CND   (Đối đỉnh)

^KBN=^DCN   (So le trong)

⇒ΔBKN=ΔCDN(g−c−g)

⇒DN=KN

c) Do AM // BC nên ^MAC=^BCA  

Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC

Từ đó ta cũng có ^DAM=^MDA⇒MD=MA

Vậy nên MD = MC hay M là trung điểm DC

Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.

Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.