Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
a, Xét ∆ ABC đều
➡️Góc A = góc B = góc C = 60°
Vì MN // AB (gt)
➡️Góc ABC = góc NMC = 60°
Xét ∆ MNC có 2 góc bằng 60°
➡️∆ MNC đều
C/m tương tự ta sẽ có ∆ BMP đều
b, ✳️ Ta có: MN // AB
MP // AC
➡️AN = MP (t/c cặp đoạn chắn)
mà MP = BP (∆ BMP đều)
➡️AN = BP
T/c cặp đoạn chắn: hai đoạn thẳng song song bị chắn bởi hai đoạn thẳng song song thì bằng nhau.
✳️ Vì ∆ ABC đều
➡️O là trọng tâm đồng thời là tâm đg tròn ngoại tiếp
➡️OA = OB
O cx đồng thời là tâm đg tròn nội tiếp
➡️AO là tia phân giác của góc BAC
➡️Góc BAO = góc OAN (1)
✳️ Xét ∆ ABO có OA = OB (cmt)
➡️∆ ABO cân tại O
➡️Góc ABO = góc BAO (2)
Từ (1) và (2) ➡️góc ABO = góc OAN
✳️ Xét ∆ AON và ∆ BOP có:
AN = BP (cmt)
Góc OAN = góc ABO (cmt)
OA = OB (cmt)
➡️∆ AON = ∆ BOP (c.g.c)
c, Vì ∆ AON = ∆ BOP (cmt)
➡️ON = OP (2 cạnh t/ư)
➡️OI là đg trung trực của PN (đpcm)
Mk trình bày đầy đủ rồi đó bn chỉ cần viết vào vở thôi mk nha hok tốt~
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
\(\Rightarrow\Delta ABC=\Delta ADC\) (Hai cạnh góc vuông)
\(\Rightarrow BC=DC\)
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
\(\widehat{BNK}=\widehat{CND}\) (Đối đỉnh)
\(\widehat{KBN}=\widehat{DCN}\) (So le trong)
\(\Rightarrow\Delta BKN=\Delta CDN\left(g-c-g\right)\)
\(\Rightarrow DN=KN\)
c) Do AM // BC nên \(\widehat{MAC}=\widehat{BCA}\)
Mà \(\widehat{BCA}=\widehat{ACM}\) nên \(\widehat{MAC}=\widehat{MCA}\Rightarrow MA=MC\)
Từ đó ta cũng có \(\widehat{DAM}=\widehat{MDA}\Rightarrow MD=MA\)
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.
Bài giải :
a) Xét hai tam giác vuông ABC và tam giác vuông ADC có:
Cạnh AC chung
BA = DA
⇒ΔABC=ΔADC (Hai cạnh góc vuông)
⇒BC=DC
Hay tam giác BCD cân tại C.
b) Xét tam giác BKN và tam giác CDN có:
BN = CN
^BNK=^CND (Đối đỉnh)
^KBN=^DCN (So le trong)
⇒ΔBKN=ΔCDN(g−c−g)
⇒DN=KN
c) Do AM // BC nên ^MAC=^BCA
Mà ^BCA=^ACM nên ^MAC=^MCA⇒MA=MC
Từ đó ta cũng có ^DAM=^MDA⇒MD=MA
Vậy nên MD = MC hay M là trung điểm DC
Xét tam giác DBC có DN, CA, BM là các đường trung tuyến nên chúng đồng quy tại một điểm.
Lại có AC giao N tại O nên O thuộc BM hay B, M, O thẳng hàng.