K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2017

a, Ta có ∆DEF vuông vì  D E 2 + D F 2 = F E 2

b, c, Tìm được: DK = 24 5 cm và HK = 32 5 cm

K D E ^ ≈ 36 0 52 ' ; K E D ^ = 35 0 8 '

d, Tìm được DM=3cm, FM=5cm và EM =  3 5 cm

e, f, Ta có:  sin D F K ^ = D K D F ;  sin D F E ^ = D E E F

=>  D K D F = D E E F => ED.DF = DK.EF

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

a: Xét ΔDEF có \(EF^2=DE^2+DF^2\)

nên ΔDEF vuông tại D

b: Xét ΔDEF vuông tại D có DK là đường cao 

nên \(\left\{{}\begin{matrix}DK\cdot FE=DE\cdot DF\\DF^2=FK\cdot FE\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}DK=4.8\left(cm\right)\\FK=6.4\left(cm\right)\end{matrix}\right.\)

20 tháng 8 2021

cau C va cau D dau ban?

17 tháng 9 2021

trong \(\Delta DEF\) vuông tại D có

\(DK^2=EK.KF\)(đlý)\(\Rightarrow KF=\dfrac{DK^2}{EK}=\dfrac{6^2}{8}\)=4,5

ta có:EF=EK+KF=8+4,5=12,5

\(DE^2=EF.EK\left(đlý\right)\)=12,5.8=100\(\Rightarrow DE=10\)

\(DF^2=EF.KF\)(đlý)=12,5.4,5=56,25\(\Rightarrow\)DF=7,5

 

 

\(AH=\sqrt{25\cdot64}=40\left(cm\right)\)

Xét ΔAHB vuông tại H có

\(\tan B=\dfrac{AH}{HB}=\dfrac{40}{25}=1.6\)

nên \(\widehat{B}\simeq58^0\)

hay \(\widehat{C}=32^0\)

a: Xét ΔDEF vuông tại D có DI là đường cao ứng với cạnh huyền FE

nên \(DI^2=IF\cdot IE\)

hay IE=4,5(cm)

Xét ΔDEF vuông tại D có DI là đường cao ứng với cạnh huyền FE

nên \(DE^2=IE\cdot EF\)

hay DE=7,5(cm)