Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cma) CM: ABC là tam giác vuôngb) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPNBài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung...
Đọc tiếp
Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm
a) CM: ABC là tam giác vuông
b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN
Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F
a) CM: 3 điểm A,E,F thẳng hàng
b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG
c) CM: Tam giác EFG đồng dạng tam giác ABC
Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE
a) CM; AF= BE.cos C
b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE
c) AF và BE cắt nhau tại O. Tính SinAOB
Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều
Ta có A và N cùng nhìn MC dưới góc 90 độ
=> AMNC là tứ giác nội tiếp
\(\Rightarrow\widehat{BAN}=\widehat{BCM}\) (góc nội tiếp cùng chắn cungMN)
Xét tg ABN và tg CBM có
\(\widehat{BAN}=\widehat{BCM}\) (cmt)
\(\widehat{ABC}\) chung
=> tg ABN đồng dạng tg CBM (g.g.g)
\(\Rightarrow\dfrac{AN}{CM}=\dfrac{AB}{BC}\)
Xét tg vuông ABC
\(\sin\widehat{C}=\dfrac{AB}{BC}\)
\(\Rightarrow\sin\widehat{C}=\dfrac{AN}{CM}\) (đpcm)