K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

 cách giải như sau: 
EB là đường phân giác ngoài của ^B nên vg với đường phân giác trong BD 
BD phân giác trong ^B 
=> BA / BC = DA / DC, đặc AB = a => BC = căn(a^2 + (3+ 5)^2) 
=> a/ căn( a^2 + 8^2) = 3/5 
bình phương 2 vế: 
a^2 /( a^2 + 8) = 9/25 
<> 25a^2 = 9a^2 + 576 
<> a^2 = 36 <> a= 6 ( do a hk âm ) 
=> AB = 6 => BC = 10 
do tg EBD vuông tai B đường cao BA 
=> AB^2 = AE.AD 
=> AE = AB^2 / AD = 36 / 3 = 12

6 tháng 9 2017

co ai giai bai nay ho tui ko :14.14.12.12.14.12.501

a: AC=AD+DC

=3+5

=8(cm)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AB}{AD}=\dfrac{CB}{CD}\)

=>\(\dfrac{AB}{3}=\dfrac{CB}{5}=k\)

=>AB=3k; CB=5k

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(\left(5k\right)^2=\left(3k\right)^2+8^2\)

=>\(16k^2=64\)

=>\(k^2=4\)

=>k=2

=>AB=3*2=6cm; BC=2*5=10(cm)

b: Xét ΔBAC có BE là phân giác góc ngoài tại B

nên \(\dfrac{EA}{EC}=\dfrac{BA}{BC}\)

=>\(\dfrac{EA}{EC}=\dfrac{3}{5}\)

=>\(\dfrac{EA}{3}=\dfrac{EC}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{EC}{5}=\dfrac{EA}{3}=\dfrac{EC-EA}{5-3}=\dfrac{AC}{2}=\dfrac{8}{2}=4\)

=>EA=12(cm)

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)

a: BC=căn 6^2+8^2=10cm

Xét ΔABC vuông tại A có sin C=AB/BC=3/5

nên góc C=37 độ

=>góc B=53 độ

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

c: Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc EAF

=>AEDF là hình vuông

12 tháng 12 2014

a/ Theo t/c đường phân giác ta có : \(\frac{DA}{DC}=\frac{AB}{BC}=\frac{2}{3}\)

Trong tam giác vuông ABC có : sin C = \(\frac{AB}{BC}=\frac{2}{3}\)Từ đó tính đc góc C, góc B

Biết góc B, góc C tính được AB, BC

b/ Dùng các hệ thức tam giác vuông tính đc AH, BH, CH

29 tháng 10 2023

a: Xét (O) có

OI là một phần đường kính

AD là dây

OI\(\perp\)AD tại I

Do đó: I là trung điểm của AD

Xét ΔBAD có

BI là đường cao

BI là đường trung tuyến

Do đó: ΔBAD cân tại B

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó;ΔBAC vuông tại A

=>BA\(\perp\)EC

Xét tứ giác EHBA có

\(\widehat{EHB}+\widehat{EAB}=90^0+90^0=180^0\)

=>EHBA là tứ giác nội tiếp

=>E,H,A,B cùng thuộc 1 đường tròn

29 tháng 10 2023

thế còn c,d đâu anh ??? hình vẽ ko có làm còn thiếu, có trách nhiệm với người hỏi đi anh

18 tháng 6 2021

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)

\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK

Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)

Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp

\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)

\(\Rightarrow\)\(AI\parallel KD\)

Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)

BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)

\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành

mà \(IA=IK\Rightarrow IKDA\) là hình thoiundefined