Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
BD/BC=3/7
=>BD/CD=3/4
=>AB/AC=3/4
=>AB/3=AC/4=k
=>AB=3k; AC=4k
AB^2+AC^2=BC^2
=>25k^2=400
=>k=4
=>AB=12cm; AC=16cm
Bạn viết đề sai rồi
Cái \(3\dfrac{14}{17}\) là hỗn số chứ ko phải là số tự nhiên nhân vs phân số
#)Giải :
(Hình bn tự vẽ)
AD là phân giác của ∆ABC \(\Rightarrow\) \(\frac{BD}{AB}=\frac{DC}{AC}\Rightarrow\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}\)
Ta có : \(BC=BD+CD=3.\frac{14}{17}+9.\frac{3}{17}=\frac{42}{17}+\frac{27}{17}=\frac{69}{17}\)
Mà ∆ABC vuông tại A nên theo định lí Py - ta - go \(\Rightarrow AB^2+AC^2=BC^2\Rightarrow AB^2+AC^2=\left(\frac{69}{17}\right)^2\)
Theo t/chất dãy tỉ số bằng nhau : \(\frac{BD^2}{AB^2}=\frac{DC^2}{AC^2}=\frac{BD^2+DC^2}{AB^2+AC^2}=\frac{\left(\frac{42}{17}\right)^2+\left(\frac{27}{17}\right)^2}{\left(\frac{69}{17}\right)^2}=\) dài dòng vãi ra @@
Chắc đề sai rồi
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
Để tính AB và AC, ta sẽ sử dụng định lý Pythagoras trong tam giác vuông.
Với ∆ABC vuông tại A và BD là phân giác của góc B, ta có:
BD/BC = 3/4
Vì BD/BC = 3/4, ta có thể xác định giá trị của BD và CD:
BD = (3/4) * BC = (3/4) * 20cm = 15cm CD = BC - BD = 20cm - 15cm = 5cm
Với AB > AC, ta có thể gọi AB = x và AC = y (với x > y).
Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:
AB^2 = AC^2 + BC^2
x^2 = y^2 + 20^2
Ta cũng biết rằng BD là phân giác của góc B, do đó:
AD = DC = 5cm
Áp dụng định lý Pythagoras trong tam giác vuông ABD, ta có:
AB^2 = AD^2 + BD^2
x^2 = 5^2 + 15^2
x^2 = 25 + 225
x^2 = 250
Từ phương trình trên, ta có x = √250 = 5√10
Do đó, AB = 5√10 cm.
Tiếp theo, ta sẽ tính giá trị của y (AC).
Áp dụng định lý Pythagoras trong tam giác vuông ACD, ta có:
AC^2 = AD^2 + CD^2
y^2 = 5^2 + 5^2
y^2 = 25 + 25
y^2 = 50
Từ phương trình trên, ta có y = √50 = 5√2
Do đó, AC = 5√2 cm.
Tóm lại, AB = 5√10 cm và AC = 5√2 cm.
https://alfazi.edu.vn/question/5b8a626cb067113822bfbc62
vào đây để nhận phần quà hấp dẫn nha
và nói là Nick lâm mời nhé
cám ơn và hậu tạ
Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC
ta lại có BC=3+4=7 cm
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2
=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5
Theo bài ra ta có:
\(\frac{BD}{BC}=\frac{3}{7}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\)
Tam giác ABC có phân giác AD
=> \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{3}{4}\)=> Đặt \(AB=3a\)=> \(AC=4a\)
Tam giác ABC vuông tại A
=> \(AB^2+AC^2=BC^2\)
<=> \(\left(3a\right)^2+\left(4a\right)^2=20^2\)
<=> \(9a^2+16a^2=400\)
<=> \(a^2=16\Leftrightarrow a=4\)
=> AB=12; AC =16