K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC 
ta lại có BC=3+4=7 cm 
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2

=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}=\dfrac{4}{5}\)

hay \(AB=\dfrac{4}{5}BC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2\cdot\dfrac{9}{25}=9^2=81\)

\(\Leftrightarrow BC^2=225\)

hay BC=15cm

\(\Leftrightarrow AB=\dfrac{4}{5}BC=12\left(cm\right)\)

19 tháng 8 2021

Ta có:     \(AC=AD+DC\)

         ⇔  \(AC=4+5\)

         ⇔  \(AC=9\) ( cm )

Áp dụng hệ thức lượng giác vào △ ABC, ta có: 

\(AB^2=AD.AC\)  ⇔  \(AB^2=4.9=36\)   ⇔   \(AB=6\)  ( cm )

Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

       \(BC^2=AB^2+AC^2\)

⇔   \(BC^2=6^2+9^2\)

⇔   \(BC^2=117\)

⇒     \(BC=\sqrt{117}=3\sqrt{13}\)

27 tháng 8 2016

Ai giải giúp vs ạ

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Hình vẽ:

11 tháng 9 2016

nhầm,

Ta có AC=AD+DC+3+5=8(cm)

Áp dụng định lí Py ta go vào tam giác vuông ta có:

AB=√BC2−AC2=√BC2−82=√BC2−64AB=BC2−AC2=BC2−82=BC2−64

Trong tam giác vuông ABC có BD là phân giác nên:

ABBC=ADDCABBC=ADDC

⇔√BC2−AC2BC=ADDC⇔BC2−AC2BC=ADDC

⇔√BC2−64BC=35⇔BC2−64BC=35

⇔5√BC2−64=3BC⇔5BC2−64=3BC

⇔(5√BC2−64)2=(3BC)2⇔(5BC2−64)2=(3BC)2

⇔25(BC2−64)=9BC2⇔25(BC2−64)=9BC2

⇔25BC2−1600=9BC2⇔25BC2−1600=9BC2

⇔16BC2=1600⇔16BC2=1600

⇔BC2=100⇔BC2=100

⇔BC=10(cm)⇔BC=10(cm)


Vậy AB=√BC2−AC2=√102−82=6(cm)AB=BC2−AC2=102−82=6(cm)

11 tháng 9 2016

AB^2 = BH x BC (1) 
AC^2 = HC x BC (2) 

Lấy (1) : (2) => AB^2/AC^2 = BH/HC <=> 9/49 = BH/CH 

Vậy tỉ lệ BH:HC cần tìm là 9:49

6 tháng 9 2017

 cách giải như sau: 
EB là đường phân giác ngoài của ^B nên vg với đường phân giác trong BD 
BD phân giác trong ^B 
=> BA / BC = DA / DC, đặc AB = a => BC = căn(a^2 + (3+ 5)^2) 
=> a/ căn( a^2 + 8^2) = 3/5 
bình phương 2 vế: 
a^2 /( a^2 + 8) = 9/25 
<> 25a^2 = 9a^2 + 576 
<> a^2 = 36 <> a= 6 ( do a hk âm ) 
=> AB = 6 => BC = 10 
do tg EBD vuông tai B đường cao BA 
=> AB^2 = AE.AD 
=> AE = AB^2 / AD = 36 / 3 = 12

6 tháng 9 2017

co ai giai bai nay ho tui ko :14.14.12.12.14.12.501

a) Xét ΔABC có 

\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)

\(\Leftrightarrow\widehat{B}=37^0\)

b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)

mà BD+CD=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)