Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABC vuông tại A có AB=3 cm; BC= 5 cm
=> AB\(^2\)+BC\(^2\)=AC\(^2\)
= 3\(^2\)+5\(^2\) =AC\(^2\)
=9 + 25= AC\(^2\)
=> 34 = AC\(^2\)
=> \(\sqrt{34}\)= AC
Vậy AC = \(\sqrt{34}\) cm
1) Áp dụng định lí Py-ta-go vào tam giác ABC:
BC2= AB2+ AC2
--> AC2= BC2 - AB2= 52 - 32= 25- 9 = 16
\(\Rightarrow\)AC = \(\sqrt{16}=4\) (cm)
2) Xét \(\Delta\)BAD và \(\Delta\)BHD :
BAD=BHD=90o
BD chung
ABD=HBD
\(\Rightarrow\) \(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền_góc nhọn)
\(\Rightarrow\)BA=BH (2 cạnh t/ứng)
\(\Rightarrow\)B cách đều 2 đầu mút của đoạn AH \(\Rightarrow\) BH vuông góc với AH
3) ko biết
Xét tam giác ABD và tam giác HBD có:
BD: chung.
Góc BAD=BHD=90 độ.
Góc ABD=HBD(Phân giác BD)
=> Tam giác ABD=tam giác HBD(ch-gn)
b/ Gọi giao điểm của BD và AH là O.
Xét tam giác AOB và tam giác HOB có:
BO:chung.
Góc ABO=HBO(Phân giác BD)
BA-BH(cạnh tương ứng của tam giác BAD=BHD)
=>Tam giác AOB=tam giác HOB(c-g-c)
=> Góc AOB=HOB(góc tương ứng)=90 độ
Góc BAH=BKC(góc ứng với cạnh đáy của tam giác cân có cùng góc B)
=> AH//KC
Mà BD vuông góc với AH nên BD cũng vuông góc với KC.
c/Xét tam giác ADK và tam giác HDC có:
DA=DH(cạnh tương ứng của tam giác BAD=tam giác BHD)
Góc DAK=DHC=90 độ.
Góc ADK=HDC(đối đỉnh)
=> tam giác ADK=tam giác HDC(g-c-g)
=> DK=DC(cạnh tương ứng)
Mà trong tam giác vuông HDC có:
DC là cạnh huyền nên DC>DH
=> DK>DH(đpcm)
b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)
Ta có: BA+AK=BK(A nằm giữa B và K)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(ΔABD=ΔHBD)
và AK=HC(cmt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của KC
hay BD\(\perp\)KC(đpcm)
a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)
Suy ra: AD=HD(hai cạnh tương ứng)