K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

Đương nhiên là góc BAC =BAC rồi ,làm j có góc nào bằng 900

23 tháng 11 2021

Answer:

A) Ta có: AD // BC

\(\Rightarrow\widehat{ABC}+\widehat{BAD}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\Rightarrow60^o+\widehat{BAD}=180^o\)

\(\Rightarrow\widehat{BAD}=120^o\)

\(\Rightarrow\widehat{BAC}+\widehat{DAC}=120^o\)

\(\Rightarrow\widehat{DAC}=30^o\)

B) Xét tam giác DAC có: DA = DC => Tam giác DAC cân tại D

\(\Rightarrow\widehat{DCA}=\widehat{DAC}=30^o\)

\(\Rightarrow\widehat{DCB}=\widehat{DCA}+\widehat{ACB}=60^o=\widehat{ABC}\)

Tứ giác ABCD có:

AD // BC (giả thiết)

Hai góc kề đáy CD bằng nhau

=> ABCD là hình thang cân

C) Theo phần b): ABCD là hình thang cân

=> AB = CD mà AD = CD (giả thiết)

=> AB = AD

Tam giác ABC vuông tại A có AB là cạnh đối diện \(\widehat{BCA}=30^o\)

=> AB = BC : 2 = BE = EC

Mà ta có: AB = AD => AD = BE

Tứ giác ADEB có:

AD // BE

AD = BE

=> Nên là hình bình hành

Ta có: AD = AB => ADEB là hình thoi

D E B A C

14 tháng 6 2017

Bạn xem lại xem có sai đề không nhé vì ABCD không thể nào là hình thang cân được

20 tháng 12 2017

đc mà bạn

16 tháng 12 2017

hình như đề sai rồi đó bạn

16 tháng 12 2017

cô mik giao the mà

29 tháng 1 2017

undefined

Bn xem lại ik nhé .BAC = 60o mới đúng

14 tháng 9 2016

bạn ơi, sai đề, vuông tại A lại còn BAC = 60 độ !!!

12 tháng 8 2017

câu c nhé

gọi DE giao AC =O, ta có tam giác AEC cân tại E, cậu tự  chứng minh 

thì góc EAC=gócECA,   mà góc ECA=góc CAD ( so le trong)

=> AO là phân giác góc EAD

mặt khác cậu dễ dàng chứng minh DE là trung trực của AC => AO vuông góc với ED 

tam giác ADE có phân giác đồng thời là trung tuyến => cân 

rồi cậu tự chúng minh tiếp nhé

12 tháng 8 2017

cảm ơn nhiều nha

Bài 2. Cho tam giác ABC vuông tại A có , kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.a) .b) Chứng minh tứ giác ABCD là hình thang cân.c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.Bài 3. Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.a) Chứng minh tứ giác MNDE là hình bình hành.b) Tìm điều kiện của tam giác ABC để tứ giác MNDE là hình...
Đọc tiếp

Bài 2. Cho tam giác ABC vuông tại A có , kẻ tia Ax song song với BC. Trên Ax lấy điểm D sao cho AD = DC.

a) .

b) Chứng minh tứ giác ABCD là hình thang cân.

c) Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.

Bài 3. Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG.

a) Chứng minh tứ giác MNDE là hình bình hành.

b) Tìm điều kiện của tam giác ABC để tứ giác MNDE là hình chữ nhật, là hình thoi.

c) Chứng minh DE + MN = BC.

Bài 4. Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc AB và HE vuông góc AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Bài 5. Cho tam giác ABC vuông tại A đường cao AH. Gọi D là điểm đối xứng với H qua AC, E là điểm đối xứng với H qua AB. Chứng minh:

a) D đối xứng với E qua A.    

b) Tam giác DHE vuông.

c) Tứ giác BDEC là hình thang vuông.     

d) BC = CD + BE

e) Tính độ dài đoạn thẳng ED biết AB = 6cm; AC = 8cm.

0