Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có \(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-30^0=60^0\)
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: Ta có: ΔMAB đều
=>\(\widehat{MAB}=60^0\)
Ta có: \(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>MA=MC
mà MB=MA
nên MB=MC
=>M là trung điểm của BC
=>\(AM=MB=\dfrac{1}{2}BC\)
c: Ta có: ΔMAC cân tại M
mà MD là đường phân giác
nên MD\(\perp\)AC
Ta có: MD\(\perp\)AC
AB\(\perp\)AC
Do đó: MD//AB
tại sao tia BI cắt Ac tại M phải là N
Mà ở đầu bài cậu nói là trên cạnh BC lấy điểm M sao cho MA=BM
a) Xét ΔAMB và ΔEMB có
BA=BE(gt)
\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))
BM chung
Do đó: ΔAMB=ΔEMB(c-g-c)
Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{MEB}=90^0\)
hay ME\(\perp\)BC(đpcm)
b) Ta có: ΔABC vuông tại A(gt)
\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)
\(\Leftrightarrow\widehat{ABC}=60^0\)
hay \(\widehat{ABE}=60^0\)
Xét ΔABE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)
nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)
hình hơi xấu bạn nhé
ta có góc C = 30 độ nên
=> góc B = 60 độ (1)
ta lại có BM= BA
=> tam giác ABM là ta giác cân tại B (2)
từ (1) và (2) => tam giác ABM lả tam giác đều
b, ta có thể chứng minh tam giác AMC cân tại M ( vì có 2 góc kề đấy = nhau và = 30 độ )
=> MC = AM ( 1)
theo câu a ta có
ABM là tam giác đều nên AM = BM ( 2)
từ (1)và (2)
=> BM = MC mà BM + MC= BC
=> AM = BM = BC/2
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
BA=BM
=>ΔBAH=ΔBMH
=>AH=MH
mà MH<HC
nên HA<HC
b: BA=BM
HA=HM
=>BH là trung trực của AM
c: Xét ΔBMK vuông tạM và ΔBAC vuông tại A co
BM=BA
góc B chung
=>ΔBMK=ΔBAC
=>BK=BC
a: Ta có: ΔAMB cân tại A
mà AE là đường trung tuyến
nên AE là đường phân giác
b: Ta có: ΔAMB cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
xét tam giác BAM có
BA=BM
=> tam giác BAM cân tại B
mà góc B = 60 độ
=> tam giác BAM đều *
=> AM=MB
góc BAC=BAM+CAM
=>góc CAM=BAC-BAM=90-60*=30 độ=góc C
=>tam giác AMC cân tại M
=>AM=MC
mà AM=MB (cmt)
=>AM=1/2BC (đccm)