K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

17 tháng 5 2016

a) Ta có tia BM là tia phân giác góc ABC (GT)

suy ra góc ABM = góc MBC

Xét tam giác ABM và tam giác EBM có 

BM chung

góc ABM = góc MBE (CMT)

BE = BA (GT)

suy ra tam giác ABM = tam giác EBM (c.g.c)

suy ra góc BAM = góc MEB ( 2 góc tương ứng )

Ta có tam giác ABC vuông tại A (GT)

suy ra góc BAM = 90

Mà góc BAM = góc MEB (CMT)

suy ra góc MEB = 90

suy ra ME vuông góc BC

b)Ta có tam giác BMA = tam giác BME (CMT)

suy ra BA = BE (2 cạnh tương ứng)

Xét tam giác AEB có 

BA = BE (CMT)

suy ra tam giác AEB cân tại B (định nghĩa ) (1)

Ta có tam giác ABC vuông tại A (GT)

suy ra góc BAC = 90

Xét tam giác ABC có :

góc BAC + góc ABC + góc BCA = 180 (định lí tổng 3 góc trong 1 tam giác)

Mà góc BAC = 90 (CMT)

góc BCA = 30 (GT)

suy ra góc ABC = 60 (2)

Từ (1),(2) suy ra tam giác AEB đều (định nghĩa)

Ta có tam giác ABE đều (CMT)

suy ra góc BAE = 60 (T/C)

Ta có góc BAE + góc EAC = góc BAC

Mà góc BAC = 90 (CMT)

góc BAE = 60 (CMT)

suy ra góc EAC = 30

Mà góc ECA = 30 (GT)

suy ra góc EAC = góc ECA = 30

Xét tam giác EAC có 

góc EAC = góc ECA (CMT)

suy ra tam giác EAC cân tại E (định nghĩa)

c)Ta có CH vuông góc BM tại H (GT)

suy ra góc BHF = góc BHC = 90

Xét tam giác BHF và tam giác BHC có 

góc FBH = góc CBH (CMT)

BH chung

góc BHF = góc BHC = 90 (CMT)

suy ra tam giác BHF = tam giác BHC (g-c-g)

suy ra HF = HC ( 2 cạnh tương ứng )

Xét tam giác MHF và tam giác MHC có

MH chung

góc BHF = góc BHC = 90 (CMT)

HF = HC (CMT)

suy ra tam giác MHF = tam giác MHC (c-g-c)

suy ra MF = MC (2 cạnh tương ứng )

Ta có ME vuông góc BC (CMT)

suy ra góc MEB = góc MEC = 90

Ta có : góc BAC + góc CAF = 180 (2 góc kề bù )

Mà góc BAC = 90 (CMT)

suy ra góc CAF =90

Ta có tam giác BMA = tam giác BME (CMT)

suy ra MA = ME (2 cạnh tương ứng )

Xét tam giác AMF và tam giác EMC có 

MA =ME (CMT)

góc MAF = góc MEC = 90(CMT)

MF = MC (CMT)

suy ra tam giác MAF = tam giác MEC (ch-cgv)

suy ra góc AMF = góc EMC (2 góc rương ứng)

Ta có góc AME + góc EMC = 180 (2 góc kề bù)

Mà góc EMC = góc AMF (CMT)

suy ra góc AME + góc AMF = 180 

suy ra E;M;F thẳng hàng 

18 tháng 5 2016

sao chả ai k đúng cho mình vậy

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
20 tháng 12 2019

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath

22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn