K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

a) Ta có tia BM là tia phân giác góc ABC (GT)

suy ra góc ABM = góc MBC

Xét tam giác ABM và tam giác EBM có 

BM chung

góc ABM = góc MBE (CMT)

BE = BA (GT)

suy ra tam giác ABM = tam giác EBM (c.g.c)

suy ra góc BAM = góc MEB ( 2 góc tương ứng )

Ta có tam giác ABC vuông tại A (GT)

suy ra góc BAM = 90

Mà góc BAM = góc MEB (CMT)

suy ra góc MEB = 90

suy ra ME vuông góc BC

b)Ta có tam giác BMA = tam giác BME (CMT)

suy ra BA = BE (2 cạnh tương ứng)

Xét tam giác AEB có 

BA = BE (CMT)

suy ra tam giác AEB cân tại B (định nghĩa ) (1)

Ta có tam giác ABC vuông tại A (GT)

suy ra góc BAC = 90

Xét tam giác ABC có :

góc BAC + góc ABC + góc BCA = 180 (định lí tổng 3 góc trong 1 tam giác)

Mà góc BAC = 90 (CMT)

góc BCA = 30 (GT)

suy ra góc ABC = 60 (2)

Từ (1),(2) suy ra tam giác AEB đều (định nghĩa)

Ta có tam giác ABE đều (CMT)

suy ra góc BAE = 60 (T/C)

Ta có góc BAE + góc EAC = góc BAC

Mà góc BAC = 90 (CMT)

góc BAE = 60 (CMT)

suy ra góc EAC = 30

Mà góc ECA = 30 (GT)

suy ra góc EAC = góc ECA = 30

Xét tam giác EAC có 

góc EAC = góc ECA (CMT)

suy ra tam giác EAC cân tại E (định nghĩa)

c)Ta có CH vuông góc BM tại H (GT)

suy ra góc BHF = góc BHC = 90

Xét tam giác BHF và tam giác BHC có 

góc FBH = góc CBH (CMT)

BH chung

góc BHF = góc BHC = 90 (CMT)

suy ra tam giác BHF = tam giác BHC (g-c-g)

suy ra HF = HC ( 2 cạnh tương ứng )

Xét tam giác MHF và tam giác MHC có

MH chung

góc BHF = góc BHC = 90 (CMT)

HF = HC (CMT)

suy ra tam giác MHF = tam giác MHC (c-g-c)

suy ra MF = MC (2 cạnh tương ứng )

Ta có ME vuông góc BC (CMT)

suy ra góc MEB = góc MEC = 90

Ta có : góc BAC + góc CAF = 180 (2 góc kề bù )

Mà góc BAC = 90 (CMT)

suy ra góc CAF =90

Ta có tam giác BMA = tam giác BME (CMT)

suy ra MA = ME (2 cạnh tương ứng )

Xét tam giác AMF và tam giác EMC có 

MA =ME (CMT)

góc MAF = góc MEC = 90(CMT)

MF = MC (CMT)

suy ra tam giác MAF = tam giác MEC (ch-cgv)

suy ra góc AMF = góc EMC (2 góc rương ứng)

Ta có góc AME + góc EMC = 180 (2 góc kề bù)

Mà góc EMC = góc AMF (CMT)

suy ra góc AME + góc AMF = 180 

suy ra E;M;F thẳng hàng 

18 tháng 5 2016

sao chả ai k đúng cho mình vậy

a) Xét ΔAMB và ΔEMB có

BA=BE(gt)

\(\widehat{ABM}=\widehat{EBM}\)(BM là tia phân giác của \(\widehat{ABE}\))

BM chung

Do đó: ΔAMB=ΔEMB(c-g-c)

Suy ra: \(\widehat{MAB}=\widehat{MEB}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{MEB}=90^0\)

hay ME\(\perp\)BC(đpcm)

b) Ta có: ΔABC vuông tại A(gt)

\(\Leftrightarrow\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABC}+30^0=90^0\)

\(\Leftrightarrow\widehat{ABC}=60^0\)

hay \(\widehat{ABE}=60^0\)

Xét ΔABE có BA=BE(gt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔBAE cân tại B có \(\widehat{ABE}=60^0\)(cmt)

nên ΔBAE đều(Dấu hiệu nhận biết tam giác đều)

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
21 tháng 5 2018

hình tự vẽ bn nha                                                                                                                                                                               a) ta có:tam giác abc vuông tại a =>  bac = 90                                                                                                                                xét tam giác abc có: abc + acb + cab = 180(t/c)                                                                                                                                      mà bac = 90(cmt)     ;     acb = 36(gt)                                                                                                                                                => 90 +36 + abc = 180                                                                                                                                                                           126 + abc = 180                                                                                                                                                                                abc= 54                                                                                                                                                                               

b) ta có: abd = ebd ( vì bd là phân giác của abc)                                                                                                                                 xét tam giác abd và tam giác ebd có:  ba=be(gt)      ;    abd=ebd(cmt)      :     chung cạnh bd                                                             => tam giác abd = tam giác ebd ( c.g.c) (đpcm)                                                                                                                          

c) ta có: xy vuông góc với ab(gt) => tam giác abk vuông tại b                                                                                                      tam giác abc vuông tại a(gt) => ab vuông góc với ac                                                                                                                        ta có: xy vuông góc với ab (gt)                                                                                                                                                                ab vuông góc với ac(cmt)                                                                                                                                                          => xy song song với ac(t/c)                                                                                                                                                          => bak = abd ( so le trong)                                                                                                                                                         xét tam giác abk vuông tại b và tam giác bad vuông tại a có:  bak=abd(cmt)          ;     chung cạnh ba                                                => tam giác abk= tam giác abd ( cgv-gnk)                                                                                                                                        => ak=bd(2 cạnh tương ứng)                                                                                                                                                      

21 tháng 5 2018

umk mk cảm ơn nhưng có hơi lỗi :(