Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác ABI và tam giác KCI có
góc AIB = góc KIC (đối đỉnh)
góc BAI = góc IKC ( = 90 độ )
=> ABI ~ KCI
b,Từ hai tam giác trên động dạng với nhau,ta suy ra : góc ABI = góc ICK (1)
Mặ khác,BI là phân giác góc ABC nên ABI = góc IBC (2)
Từ (1) và (2) => Góc IBC = góc ICK
c,AB = 3,AB=4 => BC=5(định lý Pytago)
AB:BC=AI:IC(tính chất đường phân giác)
=>AB:(AB+BC) = AI:(AI+IC)=AI:AC
=> 3:8 =AI: 4 => AI = 1,5
IC=AC-AI => IC = 4 - 1,5= 2,5.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: BC=10cm
AH=4,8cm
c: Xét ΔABH vuông tại H có HM là đườg cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
hay AM/AC=AN/AB
Xét ΔAMN vuông tại A và ΔACB vuông tại A có
AM/AC=AN/AB
Do đó: ΔAMN\(\sim\)ΔACB
\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)
\(b)\) Xét \(\Delta ABC\) vuông tại A:
\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)a, Xét tg HBA và tgABC:
Có: góc B chung
H=A=90
=> tg HBA đồng dạng ABC (gg)
b, Vì tg BHA đồng dạng tg ABC:
=>AB/HB=BC/AB
=>đpcm.
c, Áp dụng tính chất tia phân giác:
=>AB/AC=BI/IC=>BI/AB=IC/AC
Áp dụng tính chất dãy tỉ số bằng nhau:
BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7
Suy ra: BI=5/7.6=4,3
IC=5/7.8=5,7
Nhớ k nha.
a: Sửa đề: AC=8cm
BC=căn 6^2+8^2=10cm
Xét ΔBAC có BI là phân giác
nên AI/BA=CI/BC
=>AI/3=CI/5=(AI+CI)/(3+5)=8/8=1
=>AI=3cm; CI=5cm
b: Xét ΔABI vuông tại A và ΔHCI vuông tại H có
góc AIB=góc HIC
=>ΔABI đồng dạng với ΔHCI
=>AB/HC=BI/CI
=>AB*CI=BI*HC