K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(Gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{105}{7}=15\left(cm\right)\\CD=\dfrac{140}{7}=20\left(cm\right)\end{matrix}\right.\)

Vậy: BD=15cm; CD=20cm

22 tháng 3 2021

undefined

17 tháng 5 2020

Lời giải:

a)

Áp dụng định lý Pitago: BC=AB2+AC2−−−−−−−−−−√=25BC=AB2+AC2=25 (cm)

Theo tính chất đường phân giác:

ADDC=ABBC=1525=35ADDC=ABBC=1525=35

⇔ADAD+DC=33+5⇔ADAD+DC=33+5

⇔ADAC=38⇔AD20=38⇒AD=7,5⇔ADAC=38⇔AD20=38⇒AD=7,5 (cm)

b) Ta có: SABC=AH.BC2=AB.AC2SABC=AH.BC2=AB.AC2

⇒AH.BC=AB.AC⇔AH.25=15.20=300⇒AH.BC=AB.AC⇔AH.25=15.20=300

⇒AH=12⇒AH=12 (cm)

Áp dụng định lý Pitago cho tam giác vuông AHBAHB:

BH=AB2−AH2−−−−−−−−−−√=152−122−−−−−−−−√=9BH=AB2−AH2=152−122=9 (cm)

                                   k cho e vs ạ !!!

17 tháng 5 2020

cj/anh đừng chép bài đó e lm sai rùi

cj/anh theo link này để xem ạ    https://h.vn/hoi-dap/tim-kiem?q=1.+Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+%E1%BB%9F+A+,+AB=15cm,AC=20cm,+%C4%91%C6%B0%E1%BB%9Dng+ph%C3%A2n+gi%C3%A1c+BD++a,+t%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+AD++b,+g%E1%BB%8Di+H+l%C3%A0+h%C3%ACnh+chi%E1%BA%BFu+c%E1%BB%A7a+A+tr%C3%AAn+BC+.+T%C3%ADnh+%C4%91%E1%BB%99+d%C3%A0i+AH,HB++c,+cm+tam+gi%C3%A1c+AID+l%C3%A0+tam+gi%C3%A1c+c%C3%A2n&id=632651

BC=BD+CD

=15+20

=35(cm)

Xét ΔABC có AD là phân giác

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)

=>\(\dfrac{AB}{15}=\dfrac{AC}{20}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=k\)

=>AB=3k; AC=4k

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(\left(3k\right)^2+\left(4k\right)^2=35^2\)

=>\(25k^2=35^2\)

=>\(k^2=49\)

=>k=7

=>\(AB=3\cdot7=21\left(cm\right);AC=4\cdot7=28\left(cm\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:

Theo tính chất đường phân giác: 

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

$\Rightarrow AB=\frac{3}{4}AC$
Theo định lý Pitago:

$AB^2+AC^2=BC^2=(BD+DC)^2=(15+20)^2=35^2$
$\Rightarrow (\frac{3}{4}AC)^2+AC^2=35^2$
$\Rightarrow AC^2.\frac{25}{16}=35^2$
$\Rightarrow AC^2=784\Rightarrow AC=28$ (cm)

$AB=\frac{3}{4}AC=\frac{3}{4}.28=21$ (cm)

11 tháng 6 2020

bài này ra là 
a 91cm
B ko bt
C 54
 50%
100% S

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)

Vậy: BD=15cm; CD=20cm

28 tháng 4 2018
a) xét tam giác ABC và tam giác HBA có: BAC=BHA (90°) B chung => tam giác ABC~ tam giác HBA (g.g) b) Áp dụng định lý py ta go trong tam giác ABC vuông tại A BC 2 = AC 2 + AB 2 BC 2 = (4,5)2 + (6)2 BC 2 = 20.25 + 36 BC 2 = 56.25 BC = căn 56.25 = 7.5 (cm) c) Áp dụng định lý đảo ta lét ta có AE/ AB = AF / AC (E € AB, F € AC) => EF// BC