Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta chứng minh bổ đề sau:
Với tam giác $ABC$ và $G$ là trọng tâm tam giác thì :
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Thật vậy. Gọi giao điểm \(AG\cap BC=T\Rightarrow T\) là trung điểm của tam giác. \(\Rightarrow \overrightarrow{BT}+\overrightarrow{CT}=0\)
Theo tính chất đường trung tuyến:
\(\overrightarrow{GA}=2\overrightarrow{TG}\Leftrightarrow \overrightarrow{GA}+2\overrightarrow{GT}=0\) \((1)\)
Mà \(\left\{\begin{matrix} \overrightarrow{GT}=\overrightarrow{GB}+\overrightarrow{BT}\\ \overrightarrow{GT}=\overrightarrow{GC}+\overrightarrow{CT}\end{matrix}\right.\Rightarrow 2\overrightarrow{GT}=\overrightarrow{GB}+\overrightarrow{GC}\) \((2)\)
Từ \((1),(2)\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)
Áp dụng CT trên vào bài toán thì: \(\left\{\begin{matrix} \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\\ \overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=0\end{matrix}\right.\)
Khi đó, từ \(\left\{\begin{matrix} \overrightarrow{GG'}=\overrightarrow{GA}+\overrightarrow{AA'}+\overrightarrow{A'G'}\\ \overrightarrow{GG'}=\overrightarrow{GB}+\overrightarrow{BB'}+\overrightarrow{B'G'}\\ \overrightarrow{GG'}=\overrightarrow{GC}+\overrightarrow{CC'}+\overrightarrow{C'G'}\end{matrix}\right.\)
\(\Rightarrow 3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\)
Ta có đpcm.
Đề: G trọng tâm tam giác ABC
và G' trọng tâm tam giác A'B'C'
Ta có: \(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GG'}+\overrightarrow{G'A'}+\overrightarrow{BG}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{CG}+\overrightarrow{GG'}+\overrightarrow{G'C'}\)
\(=3\overrightarrow{GG'}+\left(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}\right)+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)\(=3\overrightarrow{GG'}+\overrightarrow{0}+\overrightarrow{0}=3\overrightarrow{GG'}\left(đpcm\right)\)
Hai tam giác có cùng trọng tâm khi và chỉ khi \(G\equiv G'\)
\(\Rightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=0\)
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}\\ =\left(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\right)+\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)\\ =3\overrightarrow{GG'}-\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3\overrightarrow{GG'}-\overrightarrow{0}=3\overrightarrow{GG'}\)
1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html
câu 2 cũng chả khác gì cả
a) Do A'M và BC cắt nhau tại trung điểm K của mỗi đường nên tứ giác A'BMC là hình bình hành
\(\Rightarrow MC//A'B;MC=A'B\). (1)
Tương tự ta có \(MC//AB';MC=AB'\). (2)
Từ (1) và (2) suy ra \(AB'//A'B;A'B=AB'\)
\(\Rightarrow\) Tứ giác AB'A'B là hình bình hành
\(\Rightarrow\) AA' và BB' cắt nhau tại trung điểm của mỗi đường.
Tương tự, BB' và CC' cắt nhau tại trung điểm của mỗi đường.
Vậy AA', BB', CC' đồng quy.
b) Gọi G là giao điểm của AK và MN.
\(\Delta AMA'\) có: \(\left\{{}\begin{matrix}KA'=KM\\NA=NA'\\G\in AK\cap MN\end{matrix}\right.\)
\(\Rightarrow\) G là trọng tâm của tam giác AMA'
\(\Rightarrow AG=\frac{2}{3}AK\).
\(\Delta ABC\) có: \(\left\{{}\begin{matrix}KB=KC\\G\in AK\\AG=\frac{2}{3}AK\end{matrix}\right.\)
\(\Rightarrow\) G là trọng tâm của tam giác ABC.
Vậy MN luôn đi qua trọng tâm G của tam giác ABC.
Lời giải:
Ta nhớ tới công thức: Với $G$ là trọng tâm của tam giác $ABC$ thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)
Chứng minh:
Kéo dài $GA$ cắt $BC$ tại $I$ thì $I$ là trung điểm của $BC$. Khi đó: \(\overrightarrow{IB}+\overrightarrow{IC}=0\)
$G$ là trọng tâm nên theo tính chất trọng tâm: \(GA=2GI\rightarrow \overrightarrow{GA}=-2\overrightarrow{GI}\)
Khi đó:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow {GA}+\overrightarrow{GI}+\overrightarrow {IB}+\overrightarrow{GI}+\overrightarrow{IC}\)
\(=\overrightarrow{GA}+2\overrightarrow{GI}+(\overrightarrow{IB}+\overrightarrow{IC})=\overrightarrow{GA}+2\overrightarrow{GI}\)
\(=-2\overrightarrow{GI}+2\overrightarrow{GI}=0\) (đpcm)
Hoàn toàn tương tự: \(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=0\)
Quay về bài toán và áp dụng công thức trên:
\(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=\overrightarrow{AG}+\overrightarrow{GA'}+\overrightarrow{BG}+\overrightarrow{GB'}+\overrightarrow{CG}+\overrightarrow{GC'}\)
\(=-(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC})+(\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'})\)
\(=\overrightarrow{GA'}+\overrightarrow{GB'}+\overrightarrow{GC'}\)
\(=\overrightarrow {GG'}+\overrightarrow{G'A'}+\overrightarrow{GG'}+\overrightarrow{G'B'}+\overrightarrow{GG'}+\overrightarrow{G'C'}\)
\(=3\overrightarrow{GG'}+(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'})\)
\(=3\overrightarrow {GG'}\)
\(\Rightarrow \overrightarrow{GG'}=\frac{1}{3}(\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'})\) (đpcm)