Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có vecto MM' + vecto MA = vecto MB
=> MM'BA là hình bình hành
vì A , B cố định => vecto AB cố định
xét phép tịnh tiến qua vecto AB biến M => M'
=> vecto MM' = vecto AB
=> M' là ảnh của M
Mặt khác điểm M chạy trên đường tròn (O) nên M' sẽ chạy trên đường tròn (O') là ảnh của
(O) thông qua phép tịnh tiến vecto AB
Vậy quỹ tích M' là đường tròn (O')
ta có : \(\overrightarrow{MM'}+\overrightarrow{MA}=\overrightarrow{MB}\Leftrightarrow\overrightarrow{MM'}=\overrightarrow{MB}-\overrightarrow{MA}=\overrightarrow{AB}\)
mà \(M\in\left(O\right)\Rightarrow M'\in\left(O'\right)\) với \(\left(O'\right)=T_{\overrightarrow{AB}}\left(O\right)\)
vậy tập hợp điểm \(M\) là đường tròn \(\left(O'\right)\) với \(\left(O'\right)\) là ảnh của đường tròn \(\left(O\right)\) qua \(T_{\overrightarrow{AB}}\)
1/ \(\overrightarrow{AM}=3\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)
\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MG}=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MA}+3\overrightarrow{AG}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{AM}=3\overrightarrow{AG}\)
Ban tu ket luan
2/ Bạn coi lại đề bài, đẳng thức kia có vấn đề. 2k-1IB??
\(\overrightarrow{IA}+2k-1+\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=0\)
Gọi D là trung điểm BC và G là trọng tâm tam giác ABC
Theo tính chất trọng tâm: \(AG=\dfrac{2}{3}AD\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|\)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=\left|\overrightarrow{MA}+\overrightarrow{BM}+\overrightarrow{MA}+\overrightarrow{CM}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right|=\left|\overrightarrow{BA}+\overrightarrow{CA}\right|\)
\(\Leftrightarrow\left|3\overrightarrow{MG}\right|=\left|-2\overrightarrow{AD}\right|\)
\(\Leftrightarrow MG=\dfrac{2}{3}AD=AG\)
\(\Rightarrow\) Tập hợp M là mặt cầu tâm G bán kính AG với G là trọng tâm tam giác ABC
Gọi O là giao điểm AC và BD, theo t/c hình bình hành \(\Rightarrow O\) là trung điểm AC và BD
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{0}\\\overrightarrow{OB}+\overrightarrow{OD}=\overrightarrow{0}\end{matrix}\right.\)
Từ giả thiết:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}+\overrightarrow{MS}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}+\overrightarrow{MO}+\overrightarrow{OS}=\overrightarrow{0}\)
\(\Leftrightarrow5.\overrightarrow{MO}+\overrightarrow{OS}=0\)
\(\Leftrightarrow\overrightarrow{OM}=\dfrac{1}{5}\overrightarrow{OS}\)
Hay M là điểm thuộc đoạn thẳng OS sao cho \(OM=\dfrac{1}{5}OS\) \(\Rightarrow SM=4MO\)
Do M thuộc OS \(\Rightarrow M\in\left(SAC\right)\), kéo dài AM cắt SC tại \(C'\) \(\Rightarrow C'\) là điểm cố định (bất chấp vị trí mặt phẳng (P))
Áp dụng định lý Menelaus trong tam giác SOC với 3 điểm A, M, C' thẳng hàng:
\(\dfrac{MS}{MO}.\dfrac{OA}{AC}.\dfrac{CC'}{C'S}=1\Rightarrow4.\dfrac{1}{2}.\dfrac{CC'}{C'S}=1\Rightarrow\dfrac{CC'}{SC'}=\dfrac{1}{2}\)
Bây giờ tới B' và D'.
Cách đơn giản nhất là đề ko cho biết rõ về mp (P), nó chỉ cần chứa AM là đủ, do đó ta chọn vị trí đơn giản nhất của (P) để tính, đó là (P) song song BD. Khi đó, qua M kẻ đường thẳng song song BD lần lượt cắt SB, SD tại B' và D'
Theo định lý Talet:
\(\dfrac{BB'}{SB'}=\dfrac{DD'}{SD'}=\dfrac{MO}{SM}=\dfrac{1}{4}\)
\(\Rightarrow\dfrac{BB'}{SB'}+\dfrac{CC'}{SC'}+\dfrac{DD'}{SD'}=\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{1}{4}=1\)
Trong trường hợp ko muốn làm kiểu chọn mp đặc biệt này thì ta có thể chọn vị trí bất kì cho B', nhưng sẽ tốn thời gian hơn nhiều. Nếu em cần thì cũng có thể giải quyết theo cách ấy.
ta có : \(2\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{0}\) \(\Leftrightarrow2\overrightarrow{AD}=\overrightarrow{DC}\) \(\Rightarrow\left\{{}\begin{matrix}D\in AC\\2AD=DC\end{matrix}\right.\)
\(3\overrightarrow{AE}+2\overrightarrow{BA}=\overrightarrow{0}\) \(\Leftrightarrow3\overrightarrow{AE}=2\overrightarrow{AB}\) \(\Rightarrow\left\{{}\begin{matrix}E\in AB\\AE=\dfrac{2}{3}AB\end{matrix}\right.\)
\(\Rightarrow\) HÌNH
a) ta có tam giác \(ABC\) là tam giác đều \(\Rightarrow\widehat{BAC}=\widehat{EAD}=60^o\)
tâm quay là \(A\) \(\Rightarrow\) phép biến hình tâm \(A\) biến \(E\) thành \(D\) là \(Q_{\left(A;\dfrac{\pi}{3}\right)}\)(các góc quay lệt nhau \(2\pi\))
b) ta có \(\widehat{BAC}=\widehat{EAD}=60^o\) và \(\overrightarrow{ED}\uparrow\uparrow\overrightarrow{BC}\) ; \(\overrightarrow{AE}\uparrow\uparrow\overrightarrow{AB}\) ; \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{AC}\)
\(\Rightarrow\) ảnh của \(B\) qua phép biến hình trên là \(C\) .