Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)
. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)
Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.
- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).
- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→
. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′
Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.
- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.
M-> M' => VÊCTỚ MM'= VT u
Tv: M' -> M'' => vt M'M'' = v
áp dụng quy tắc 3 diểm => vt MM' +M'M'' = u+v =w
=> với mỗi điểm M qua phép tt theo vecto w se biến M -> M'' => ĐÓ LÀ PHÉP TT
ta có : \(2\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{0}\) \(\Leftrightarrow2\overrightarrow{AD}=\overrightarrow{DC}\) \(\Rightarrow\left\{{}\begin{matrix}D\in AC\\2AD=DC\end{matrix}\right.\)
\(3\overrightarrow{AE}+2\overrightarrow{BA}=\overrightarrow{0}\) \(\Leftrightarrow3\overrightarrow{AE}=2\overrightarrow{AB}\) \(\Rightarrow\left\{{}\begin{matrix}E\in AB\\AE=\dfrac{2}{3}AB\end{matrix}\right.\)
\(\Rightarrow\) HÌNH
a) ta có tam giác \(ABC\) là tam giác đều \(\Rightarrow\widehat{BAC}=\widehat{EAD}=60^o\)
tâm quay là \(A\) \(\Rightarrow\) phép biến hình tâm \(A\) biến \(E\) thành \(D\) là \(Q_{\left(A;\dfrac{\pi}{3}\right)}\)(các góc quay lệt nhau \(2\pi\))
b) ta có \(\widehat{BAC}=\widehat{EAD}=60^o\) và \(\overrightarrow{ED}\uparrow\uparrow\overrightarrow{BC}\) ; \(\overrightarrow{AE}\uparrow\uparrow\overrightarrow{AB}\) ; \(\overrightarrow{AD}\uparrow\uparrow\overrightarrow{AC}\)
\(\Rightarrow\) ảnh của \(B\) qua phép biến hình trên là \(C\) .
mấy dòng đầu có mũi tên chỉ lên là gì a