K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2023

loading... a) Xét hai tam giác vuông: ∆AHC và ∆MHC có:

HC là cạnh ccung

AH = MH (gt)

⇒ ∆AHC = ∆MHC (hai cạnh góc vuông)

b) Do ∆AHC = ∆MHC (cmt)

⇒ ∠ACH = ∠MCH (hai góc tương ứng)

AC = MC (hai cạnh tương ứng)

Do ∠ACH = ∠MCH (cmt)

⇒ ∠ACB = ∠MCB

Xét ∆ABC và ∆MBC có:

AC = MC (cmt)

∠ACB = ∠MCB (cmt)

BC là cạnh chung

⇒ ∆ABC = ∆MBC (c-g-c)

a: Xét ΔCHA vuông tại H và ΔCHM vuông tại H có

CH chung

HA=HM

=>ΔCHA=ΔCHM

=>góc ACH=góc MCH

=>CH là phân giác của góc ACM

b: Xét ΔAHC vuông tại H và ΔMHD vuông tại H có

HA=HM

góc HAC=góc HDM

=>ΔHAC=ΔHMD

=>HC=HD

=>AM là trung trực của CD

21 tháng 12 2021

a: Xét ΔABH và ΔACH có

AB=AC

AH chung

HB=HC

Do đó: ΔABH=ΔACH

12 tháng 2 2018

(Bạn tự vẽ hình giùm)

a/ \(\Delta AHB\)vuông và \(\Delta AHC\)vuông có: AB = AC (\(\Delta ABC\)cân tại A)

Cạnh AH chung

=> \(\Delta AHB\)vuông = \(\Delta AHC\)vuông (cạnh huyền - cạnh góc vuông) (đpcm)

b/ Ta có \(\Delta AHB\)\(\Delta AHC\) (cm câu a) => HB = HC (hai cạnh tương ứng) => H là trung điểm của BC

=> BH = \(\frac{BC}{2}\)\(\frac{8}{2}\)= 4 (cm)

Ta có \(\Delta AHB\)vuông tại H => AH2 + HB2 = AB2 (định lí Pitago)

=> AH2 = AB2 - HB2

=> AH2 = 52 - 42

=> AH2 = 25 - 16

=> AH2 = 9

=> AH = \(\sqrt{9}\)

=> AH = 3

c/ \(\Delta AHB\)vuông tại H và \(\Delta MHB\)vuông tại H có: AH = MH (gt)

Cạnh HB chung

=> \(\Delta AHB\)vuông = \(\Delta MHB\)vuông (cạnh huyền - cạnh góc vuông) => AB = MB (hai cạnh tương ứng)

=> \(\Delta ABM\)cân tại B (đpcm)

d/ Ta có \(\Delta AHB\)\(\Delta AHC\)(cm câu a) => \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng) (1)

Ta có \(\Delta AHB\)\(\Delta MHB\)(cm câu c) => \(\widehat{M}=\widehat{BAH}\)(hai góc tương ứng) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{CAH}\)ở vị trí so le trong => BM // AC (đpcm)

26 tháng 6 2020

A B C H M

a ) Ta có ΔABC cân tại A .

\(\Rightarrow\) AB = AC

Có AH là đường cao

\(\Rightarrow\) AH đồng thời là trung tuyến

\(\Rightarrow\) H là trung điểm của BC

Xét ΔAHB và ΔAHC có :

AB = AC

Góc AHB = Góc AHC = 90 

       BH = HC

\(\Rightarrow\) Δ AHB = Δ AHC ( c - g - c )

b ) Xét ΔAHB vuông tại H có .

\(AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-4^2=3}\)

c ) Xét ΔABM có BH vừa là đường cao vừa là trung tuyến .

\(\Rightarrow\) ΔABM cân tại B

d ) Ta có : BAM cân tại B 

\(\Rightarrow\) Góc BAM = Góc BMA

Xét ΔBAC cân tại A có HA là trung tuyến

\(\Rightarrow\) AH đồng thời là tia phân giác của ΔABC .

\(\Rightarrow\) Góc BAH = Góc CAH

\(\Rightarrow\) Góc BMA = Góc HAC

Mà 2 góc này ở vị trí so le trong của BM và AC .

\(\Rightarrow\) BM // AC

26 tháng 6 2020

A B C H M

a) ( Cái này có khá nhiều cách chứng minh nhé . )

Xét tam giác vuông AHB và tam giác vuông AHC có :

AB = AC ( tam giác ABC cân )

AH chung 

=> Tam giác vuông AHB = tam giác vuông AHC ( ch-cgv )

b) => HB = HC ( hai cạnh tương ứng )

Mà BC = 8cm

=> HB = HC = BC/2 = 8/2 = 4cm

Áp dụng định lí Pytago cho tam giác vuông AHB ( AHC cũng được ) ta có :

AB2 = AH2 + HB2

52 = AH2 + 42

=> \(AH=\sqrt{5^2-4^2}=\sqrt{25-16}=3cm\)

c) HM là tia đối của HA

=> ^AHB + ^BHM = 1800

=> 900 + ^BHM = 1800

=> ^BHM = ^AHB = 900 => Tam giác BHM vuông tại H

Xét tam giác vuông AHB và tam giác vuông BHM ta có :

HM = HA ( gt )

 ^BHM = ^AHB ( cmt ) 

HB chung

=> Tam giác AHB = tam giác BHM ( c.g.c )

=> BM = BA ( hai cạnh tương ứng )

Tam giác ABM có BM = BA ( cmt ) => Tam giác ABM cân tại B

d) Ta có : Tam giác AHB = Tam giác AHC ( theo ý a) 

Tam giác AHB = Tam giác BHM ( theo ý c) 

Theo tính chất bắc cầu => Tam giác AHC = tam giác BHM 

=> ^HBM = ^ACH ( hai góc tương ứng )

mà hai góc ở vị trí so le trong 

=> BM // AC ( đpcm )

( Hình có thể k đc đẹp lắm )

18 tháng 4 2021

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)

=> AH là đường trung tuyến (TC tam giác cân)

=> H à TĐ của BC 

=> BH = HC 

Xét tam giác AHB và tam giác AHC:

BH = HC (cmt)

^AHB = ^AHC (90o)

AH chung

=> tam giác AHB = tam giác AHC (ch - cgv)

b) Ta có: HA = HD (gt) => H là TĐ của AD

Xét tam giác ACD có:

CH là đường cao (CH vuông góc AD)

CH là trung tuyến (H là TĐ của AD)

=> tam giác ACD cân tại C

c) Xét tam giác ACD cân tại A có:

AD > AC + CD (Bất đẳng thức trong tam giác)

=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)

Mà  \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)

=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)

Bạn có thể giúp mik thêm 1 cái nx là vẽ hình đc ko bạn?

15 tháng 12 2019

M A B C N H F D

a) Xét \(\Delta\)AHB và \(\Delta\)DHB có:

^AHB = ^DHB ( 1v )

HA = HD ( giả thiết )

MH chung 

=> \(\Delta\)AHB = \(\Delta\)DHB  ( c.g.c) 

b) Từ (a) => ^ABH = ^DHB  => BH là phân giác ^ABD

Vì \(\Delta\)ABC nhọn => H nằm trong đoạn BC 

=> BC là phân giác ^ABD

c) NF vuông BC 

AH vuông BC 

=> NF // AH 

=> ^NFM = ^HAM ( So le trong )

Lại có: ^HMA = NMF ( đối đỉnh ) và MA = MF ( giả thiết )

=> \(\Delta\)NFM = \(\Delta\)HAM  ( g.c.g)

=> NF = AH ( 2) 

Từ ( a) => AH = HD ( 3)

Từ (2) ; (3) => NF = HD

a: \(AB=\sqrt{BH^2+AH^2}=5\left(cm\right)\)

b: Xét ΔAHC vuông tại H và ΔDHC vuông tại H có

HC chung

HA=HD

Do đó:ΔAHC=ΔDHC

Suy ra: AC=DC

hay ΔACD cân tại C

c: Xét ΔBAD có 

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABD cân tại B

Xét ΔBAC và ΔBDC có

BA=BD

AC=DC

BC chung

Do đó: ΔBAC=ΔBDC

Suy ra: \(\widehat{BAC}=\widehat{BDC}=90^0\)

hayΔBDC vuông tại D

12 tháng 5 2023

a) Xét ΔABE vuông tại E & ΔNBE vuông tại E có:

- BE là cạnh chung, BN = BA (giả thuyết)

Suy ra ΔABE = ΔNBE (cạnh huyền - cạnh góc vuông)

b) Theo đề ta có BH vuông góc với AD và HA = HD

Suy ra BH là đường trung trực của AD

Suy ra BA = BD (vì B nằm trên đường trung trực của AD)

c) Trong ΔNAB có AH và BE là đường cao, đồng quy tại điểm K

Suy ra NK là đường cao của ΔNAB, hay NK vuông góc với AB

Mà AC cũng vuông góc với AB, suy ra NK // CA

13 tháng 5 2023

a. - Vì BE vuông góc với AN (gt)
=> tam giác ABE vuông tại E (tc)
     tam giác NBE vuông tại E (tc)
- Xét tam giác vuông ABE và tam giác vuông NBE, có:
    + Chung BE
    + BA = BN (gt)
=> tam giác vuông ABE = tam giác vuông NBE (Cạnh huyền - cạnh  góc vuông)

b. - Vì AH là đường cao của tam giác ABC (gt)
=> tam giác ABH vuông tại H
     tam giác DBH vuông tại H
- Xét tam giác vuông ABH và tam giác vuông DBH, có:
    + Chung BH
    + HA = HD (gt)
=> tam giác vuông ABH = tam giác vuông DBH (2 cạnh góc vuông)
    => BA = BD (2 cạnh tương ứng)