K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Đặt SAHB = S1, SAHC = S2, SBHC = S3
a.
\(\dfrac{AH}{AD}=\dfrac{S_1}{S_{ABD}}=\dfrac{S_2}{S_{ACD}}=\dfrac{S_1+S_2}{S}\)
Tương tự:
\(\dfrac{BH}{BE}=\dfrac{S_1+S_3}{S};\dfrac{CH}{CF}=\dfrac{S_2+S_3}{S}\)
\(\Rightarrow\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=\dfrac{2\left(S_1+S_2+S_3\right)}{S}=\dfrac{2S}{S}=2\)
b.
\(\dfrac{AH}{HD}=\dfrac{S_1}{S_{BHD}}=\dfrac{S_2}{S_{CHD}}=\dfrac{S_1+S_2}{S_3}\)
Tương tự:
\(\dfrac{BH}{HE}=\dfrac{S_1+S_3}{S_2};\dfrac{CH}{HF}=\dfrac{S_2+S_3}{S_1}\)
\(\Rightarrow\dfrac{AH}{HD}+\dfrac{BH}{HE}+\dfrac{CH}{HF}=\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{BF}{HF}-3\)
\(=\dfrac{S}{S_1}+\dfrac{S}{S_2}+\dfrac{S}{S_3}-3\ge\dfrac{9S}{S_1+S_2+S_3}-3=\dfrac{9S}{S}-3=6\)
Dấu "=" xảy ra khi H là trọng tâm tam giác ABC