K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2021

Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/AD

Đây nhé

3 tháng 2 2017

k minh minh giai

3 tháng 2 2017

giúp mik vs 

hứa sẽ k nếu đúng và đầy đủ 

6 tháng 4 2020

https://hoc24.vn/hoi-dap/question/954653.html

Tương tự nhé!

6 tháng 4 2020

Bài này thì dễ mà đề nó nói không dùng BĐT mà

@Trần Quốc Khanh

6 tháng 10 2019

A B C F E H

\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)

\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)

Từ (1) và (2) suy ra 

\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\) 

( Áp dụng tính chất của dãy tỉ số bằng nhau )

CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)

\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)

Cộng vế với vế của các bất đẳng thức trên ta được :

\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)

Chúc bạn học tốt !!!