Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt SAHB = S1, SAHC = S2, SBHC = S3
a.
\(\dfrac{AH}{AD}=\dfrac{S_1}{S_{ABD}}=\dfrac{S_2}{S_{ACD}}=\dfrac{S_1+S_2}{S}\)
Tương tự:
\(\dfrac{BH}{BE}=\dfrac{S_1+S_3}{S};\dfrac{CH}{CF}=\dfrac{S_2+S_3}{S}\)
\(\Rightarrow\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=\dfrac{2\left(S_1+S_2+S_3\right)}{S}=\dfrac{2S}{S}=2\)
b.
\(\dfrac{AH}{HD}=\dfrac{S_1}{S_{BHD}}=\dfrac{S_2}{S_{CHD}}=\dfrac{S_1+S_2}{S_3}\)
Tương tự:
\(\dfrac{BH}{HE}=\dfrac{S_1+S_3}{S_2};\dfrac{CH}{HF}=\dfrac{S_2+S_3}{S_1}\)
\(\Rightarrow\dfrac{AH}{HD}+\dfrac{BH}{HE}+\dfrac{CH}{HF}=\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{BF}{HF}-3\)
\(=\dfrac{S}{S_1}+\dfrac{S}{S_2}+\dfrac{S}{S_3}-3\ge\dfrac{9S}{S_1+S_2+S_3}-3=\dfrac{9S}{S}-3=6\)
Dấu "=" xảy ra khi H là trọng tâm tam giác ABC
k cho mình đi huhu. Mình chưa được ai k hết
hãy trao cho em
hãy trao cho em