K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :a) MENF là hình bình hành.b) Các đường thẳng AC, BD, MN,...
Đọc tiếp

Bài 1: Cho tam giác ABC, các trung tuyến BM và CN cắt nhau ở G. Gọi P là điểm dối xứng của điểm M qua G. Gọi Q là điểm đối xứng của điểm N qua G.Tứ giác MNPQ là hình gì? Vì sao ?

Bài 2: Cho hình bình hành ABCD. Lấy hai điểm E, F theo thứ tự thuộc AB và CD sao cho AE = CF. Lấy hai điểm M, N theo thứ tự thuộc BC và AD sao cho CM = AN. Chứng minh rằng :

a) MENF là hình bình hành.

b) Các đường thẳng AC, BD, MN, EF đồng quy.

Bài 3: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 4: Cho (ABC. Gọi M,N lần lượt là trung điểm của BC,AC. Gọi H là điểm đối xứng của N qua M.Chứng minh tứ giác BNCH và ABHN là hình bình hành.

Bài 5: Cho hình bình hành ABCD. E,F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) C/m 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M và N. Chứng minh tứ giác EMFN là hình bình hành.

Bài 6 : Cho tứ  giác ABCD biết số đo của các góc A; B; C; D tỉ lệ thuận với5; 8; 13 và 10.

          a/ Tính số đo các góc của tứ giác ABCD

          b/ Kéo dài hai cạnh AB và DC cắt nhau ở E, kéo dài hai cạnh AD và BC cắt nhau ở F. Hai tia phân giác của các góc AED và góc AFB cắt nhau ở O. Phân giác của góc AFB cắt các cạnh CD và AB tại M và N. Chứng minh O là trung điểm  của đoạn MN.

Bài 7: Cho hình thang ABCD ( AB//CD).

          a/ Chứng minh rằng nếu hai tia phân giác của hai góc A và D cùng đi qua trung điểm F của cạnh bên BC thì cạnh bên AD bằng tổng hai đáy.

          b/ Chứng minh rằng nếu AD = AB + CD thì hai tia phân giác của hai góc A và D cắt nhau tại trung điểm của cạnh bên BC.

0
24 tháng 11 2021

a) Ta có: E,F lần lượt là trung điểm AB,BC

=> EF là đường trung bình

=> EF//AC

Mà \(\widehat{EAC}=\widehat{FCA}\)(Tam giác ABC cân tại A)

=> AEFC là hình thang cân

b) Ta có: EF là đường trung bình

\(\Rightarrow AC=2EF=2.20=40\left(cm\right)\)

c) Xét tứ giác ABDC có:

F Lfa trung điểm chung của BC và AD

=> ABDC là hình bình hành

Đề sai rồi bạn

a: Xét tứ giác DEBF có 

BE//DF

BE=DF
Do đó: DEBF là hình bình hành

b: Xét ΔANB có 

E là trung điểm của AB

EM//NB

Do đó: M là trung điểm của AN

=>AM=MN(1)

Xét ΔMCD có 

F là trung điểm của CD

FN//DM

Do đó: N là trung điểm của CM

Suy ra: NC=NM(2)

Từ (1) và (2) suy ra AM=MN=NC

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(DN=NC=\dfrac{DC}{2}\)(N là trung điểm của DC)

mà AB=DC(Hai cạnh đối trong hình bình hành ABCD)

nên AM=MB=DN=NC

Xét tứ giác AMCN có 

AM//CN(AB//CD, M∈AB, N∈CD)

AM=CN(cmt)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AMND có 

AM//ND(AB//CD, M∈AB, N∈CD)

AM=ND(cmt)

Do đó: AMND là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: \(AB=2\cdot AM\)(M là trung điểm của AB)

mà \(AB=2\cdot AD\)(gt)

nên AM=AD

Hình bình hành AMND có AM=AD(cmt)

nên AMND là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AN và DM vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AN⊥DM(đpcm)

c) Ta có: AN và DM vuông góc với nhau tại trung điểm của mỗi đường(cmt)

mà AN cắt DM tại E(gt)

nên E là trung điểm chung của AN và DM

Xét tứ giác BMNC có 

BM//NC(AB//CD, M∈AB, N∈CD)

BM=NC(cmt)

Do đó: BMNC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo BN và MC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà BN cắt MC tại F(gt)

nên F là trung điểm chung của MC và BN

Ta có: \(EN=\dfrac{AN}{2}\)(E là trung điểm của AN)

\(MF=\dfrac{MC}{2}\)(F là trung điểm của MC)

mà AN=MC(Hai cạnh đối trong hình bình hành AMCN)

nên EN=MF

Ta có: AN//MC(Hai cạnh đối trong hình bình hành AMCN)

mà E∈AN(cmt)

và F∈MC(cmt)

nên EN//MF

Ta có: AN⊥MD(cmt)

mà AN cắt MD tại E(gt)

nên NE⊥ME tại E

hay \(\widehat{MEN}=90^0\)

Xét tứ giác EMFN có 

EN//MF(cmt)

EN=MF(cmt)

Do đó: EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EMFN có \(\widehat{MEN}=90^0\)(cmt)

nên EMFN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒EF=MN(Hai đường chéo trong hình chữ nhật EMFN)

10 tháng 1 2021

Bạn ơi bài này dễ mừhihi

            

23 tháng 11 2021

{AD // BCAD = BC AB = CDAB // CD

Vì AD // BC

⇒ AD // BE

Vì {AD = BCBE= BC

⇒ AD = BE

Tứ giác EADB có

{AD // BEAD = BE

⇒ Tứ giác EADB là hình bình hành (đpcm)

b, Vì tứ giác EADB là hình bình hành

⇒ AE // BD (1)

Vì {AB = CDDF = CD

⇒ AB = DF

Vì AB // CD

⇒ AB // DF

Tứ giác ABDF có

{AB = DFAB // DF

⇒ Tứ giác ABDF là hình bình hành

⇒ AF // BD (2)

Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)

c, Vì tứ giác EADB là hình bình hành

⇒ AE = BD (3)

Vì tứ giác ABDF là hình bình hành

⇒ AF = BD (4)

Từ (3), (4) ⇒ AE = AF

Vì {AE = AFE, A, F thẳng hàng 

⇒ A là trung điểm của EF

⇒ CA là đường trung tuyến của ΔCEF

Vì DC = DF

⇒ D là trung điểm của EF

⇒ ED là đường trung tuyến của ΔCEF

Vì BE = BC

⇒ B là trung điểm của EC

⇒ FB là đường trung tuyến của ΔCEF

Như vậy

{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF

23 tháng 11 2021

chết hình như sai thì phải     ucche